Nonlinear Dispersive PDE
非线性色散偏微分方程
基本信息
- 批准号:0901222
- 负责人:
- 金额:$ 23.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This project conducts research in the area of dispersive partial differential equations. Its intent is twofold. On the one hand, it is concerned with specific questions about the behavior of solutions to certain dispersive equations. On the other, it is focused on developing new theoretical tools that naturally address a wide range of problems in the area Hamiltonian partial differential equations. These two objectives feed into each other by way of multilinear harmonic analysis techniques. The main problems in the area are associated with solutions that tend to behave differently depending on whether their regularity is subcritical, critical, or supercritical with respect to a symmetry of the equation. In particular, the hope is that the project will supplement and broaden our understanding about the properties of mass critical, mass subcritical, and energy supercritical equations. This project looks closely at the qualitative behavior of such solutions. This behavior is based on properties that include local/global existence of solutions, uniqueness, regularity, smoothing effect, finite-in-time blow up, and asymptotic behavior of solutions.Dispersive equations model certain wave phenomena that occur in nature. Their solutions tend to be waves that spread out spatially on unbounded domains. They have received a great deal of attention from mathematicians, in particular because of their applications to nonlinear optics, water wave theory, and plasma physics. One famous example from this class is the nonlinear Schrodinger equation. Building on the previous advances, the goal of the project is to extend the known results to cases where the analysis is harder, the terrain is unknown, and existing theoretical results lag behind conjecture for explaining the properties that we expect and have observed numerically. The intent is to provide analytical testing grounds for these physical observables.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目在色散偏微分方程领域进行研究。其意图是双重的。一方面,它关注有关某些色散方程解的行为的具体问题。另一方面,它专注于开发新的理论工具,自然地解决了广泛的问题,在该地区的哈密顿偏微分方程。这两个目标通过多线性谐波分析技术相互馈入。在该地区的主要问题是与解决方案,往往表现不同,这取决于他们的规律性是否是亚临界,临界或超临界相对于对称性的方程。特别是,希望该项目将补充和扩大我们对质量临界,质量亚临界和能量超临界方程的性质的理解。这个项目密切关注这些解决方案的定性行为。 这种行为基于解的局部/全局存在性、唯一性、正则性、光滑效应、有限时间爆破和解的渐近行为等性质。色散方程模拟自然界中发生的某些波动现象。他们的解往往是在无界域上空间上展开的波。它们受到了数学家的极大关注,特别是因为它们在非线性光学、水波理论和等离子体物理中的应用。一个著名的例子是非线性薛定谔方程。基于以前的进展,该项目的目标是将已知结果扩展到分析更困难,地形未知,现有理论结果落后于猜测的情况下,以解释我们期望和观察到的数值特性。其目的是为这些物理观测提供分析测试依据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikolaos Tzirakis其他文献
Nikolaos Tzirakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Derivation of mean-field equations and dynamics of coherent structures in nonlinear dispersive PDE
非线性色散偏微分方程中平均场方程的推导和相干结构动力学
- 批准号:
1500106 - 财政年份:2015
- 资助金额:
$ 23.12万 - 项目类别:
Continuing Grant
Quantified dynamics of nonlinear dispersive PDE
非线性色散偏微分方程的量化动力学
- 批准号:
1200455 - 财政年份:2012
- 资助金额:
$ 23.12万 - 项目类别:
Continuing Grant
Stability of Nonlinear Waves in Dissipative and Dispersive PDE
耗散和色散偏微分方程中非线性波的稳定性
- 批准号:
1211183 - 财政年份:2012
- 资助金额:
$ 23.12万 - 项目类别:
Standard Grant
Topics in Global Behavior of Solutions to nonlinear dispersive PDE
非线性色散偏微分方程解的全局行为主题
- 批准号:
1103274 - 财政年份:2011
- 资助金额:
$ 23.12万 - 项目类别:
Standard Grant
Dispersive PDE and Interfacial Fluid Dynamics
色散偏微分方程和界面流体动力学
- 批准号:
1008387 - 财政年份:2010
- 资助金额:
$ 23.12万 - 项目类别:
Continuing Grant
Dispersive PDE at critical regularity
临界正则性的色散偏微分方程
- 批准号:
0901166 - 财政年份:2009
- 资助金额:
$ 23.12万 - 项目类别:
Standard Grant
Dispersive PDE at critical regularity
临界正则性的色散偏微分方程
- 批准号:
0965029 - 财政年份:2009
- 资助金额:
$ 23.12万 - 项目类别:
Standard Grant
Quantified dynamics of nonlinear dispersive PDE
非线性色散偏微分方程的量化动力学
- 批准号:
0901582 - 财政年份:2009
- 资助金额:
$ 23.12万 - 项目类别:
Standard Grant
Regularity Properties of Dispersive PDE
色散偏微分方程的正则性质
- 批准号:
0602792 - 财政年份:2006
- 资助金额:
$ 23.12万 - 项目类别:
Continuing Grant