Topics in Global Behavior of Solutions to nonlinear dispersive PDE

非线性色散偏微分方程解的全局行为主题

基本信息

  • 批准号:
    1103274
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

This project pursues several avenues of research in the theory of evolution partial differential equations. The principal investigator will study global behavior of solutions to nonlinear dispersive equations. These equations describe the evolution of waves, in particular in situations where different groups of waves propagate at different velocities so that waves "disperse" over time. Typical equations are the nonlinear Schrodinger and wave equations, since mathematically they represent the simplest nonlinear dispersive models and physically they describe wave propagation in applications such as nonlinear optics, hydrodynamics, plasma physics, quantum mechanics, and Bose-Einstein condensates. The nonlinear terms in dispersive equations create complicated but fascinating dynamics such as moving and interacting solitons, contracting or fixed singularities, collapses, etc. The study of solutions exhibiting such properties will be the focus of this proposal. The phenomenon of collapse is arguably "the most" nonlinear occurrence possible in an evolution equation, so it is, in general, very difficult to study. Recently there have been significant analytical strides made in the understanding of singular solutions to dispersive equations, hence it is quite timely to focus a research effort in this direction. Thus, the thrust of the project will be to provide descriptions of both the formation and the dynamics of singularities and to investigate the various thresholds that separate different types of global behavior in solutions to nonlinear dispersive equations.This project studies differential equations that describe dispersion of waves appearing in various physical contexts: laser optics, fluid and air dynamics, and quantum and plasma physics, to name just a few. The methods developed here can be applied to problems not only in mathematics and physics, but also in statistics, engineering, biology, and medicine (for example,to study phenomena as wide-ranging as the formation of tsunamis or errant cardiac rhythms). Understanding when and how singularities occur is important for numerical simulations and real-time engineering applications as well. The principal investigator will disseminate the results of this project online, through a (freely accessible) institutional website and various free preprint servers, and she will present the latest advances at national and international conferences. Furthermore, this proposal includes mentoring and training activities at the highest levels of scientific and mathematical competency. The principal investigator will organize seminars, colloquia, undergraduate talks, and similar activities specifically designed to instruct students on the topics of the project, as well as on the general areas of partial differential equations and analysis. Her participation in the summer "Research Experiences for Undergraduates" programs organized by her home institution and nearby universities will be enhanced by this project. In particular, she will extend and develop her mini-courses and guest lectures at the "Summer Program for Women in Math" at her home institution in order to encourage women to pursue careers in mathematics and science.
该项目追求演化偏微分方程理论的多种研究途径。首席研究员将研究非线性色散方程解的全局行为。这些方程描述了波的演化,特别是在不同组的波以不同的速度传播从而导致波随着时间的推移而“分散”的情况下。典型的方程是非线性薛定谔方程和波动方程,因为在数学上它们代表最简单的非线性色散模型,在物理上它们描述了非线性光学、流体动力学、等离子体物理、量子力学和玻色-爱因斯坦凝聚等应用中的波传播。色散方程中的非线性项创建了复杂但令人着迷的动力学,例如移动和相互作用的孤子、收缩或固定的奇点、塌缩等。对表现出此类属性的解决方案的研究将是本提案的重点。崩溃现象可以说是演化方程中可能出现的“最”非线性现象,因此一般来说非常难以研究。最近,在理解色散方程的奇异解方面取得了重大的分析进展,因此将研究工作集中在这个方向是非常及时的。因此,该项目的主旨将是提供奇点的形成和动力学的描述,并研究在非线性色散方程的解中区分不同类型的全局行为的各种阈值。该项目研究描述出现在各种物理环境中的波色散的微分方程:激光光学、流体和空气动力学、量子和等离子体物理学等等。这里开发的方法不仅可以应用于数学和物理领域的问题,还可以应用于统计学、工程、生物学和医学领域的问题(例如,研究海啸的形成或心律失常等广泛的现象)。了解奇点何时以及如何发生对于数值模拟和实时工程应用也很重要。首席研究员将通过(免费访问的)机构网站和各种免费预印本服务器在线传播该项目的结果,她将在国内和国际会议上介绍最新进展。此外,该提案还包括最高水平的科学和数学能力的指导和培训活动。首席研究员将组织研讨会、座谈会、本科生讲座和专门设计的类似活动,以指导学生了解项目主题以及偏微分方程和分析的一般领域。该项目将加强她对所在机构和附近大学组织的夏季“本科生研究经验”项目的参与。特别是,她将在其所在机构的“女性数学夏季项目”中扩展和发展她的迷你课程和客座讲座,以鼓励女性追求数学和科学职业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Svetlana Roudenko其他文献

Special Issue on Mathematical Methods in Medical Imaging
  • DOI:
    10.1007/s10915-012-9576-9
  • 发表时间:
    2012-01-18
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Anne Gelb;Rosemary Renaut;Svetlana Roudenko;Douglas Cochran
  • 通讯作者:
    Douglas Cochran
Littlewood–Paley theory for matrix-weighted function spaces
  • DOI:
    10.1007/s00208-020-02088-0
  • 发表时间:
    2021-01-16
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Michael Frazier;Svetlana Roudenko
  • 通讯作者:
    Svetlana Roudenko

Svetlana Roudenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Svetlana Roudenko', 18)}}的其他基金

Joint Applied Mathematics and Statistics Scholarships
应用数学和统计学联合奖学金
  • 批准号:
    2221491
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Fifth Workshop on Nonlinear Dispersive Equations
第五届非线性色散方程研讨会
  • 批准号:
    2231021
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Spectral Analysis in Dispersive Partial Differential Equations
合作研究:色散偏微分方程中的非线性动力学和谱分析
  • 批准号:
    2055130
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
REU Site: Applied Mathematics Research Program for Undergraduates
REU 网站:本科生应用数学研究计划
  • 批准号:
    2050971
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
  • 批准号:
    1838371
  • 财政年份:
    2018
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
  • 批准号:
    1927258
  • 财政年份:
    2018
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Nonlinear Phenomena in Stochastic and Deterministic Dispersive Partial Differential Equations
随机和确定性色散偏微分方程中的非线性现象
  • 批准号:
    1815873
  • 财政年份:
    2018
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
CAREER: Nonlinear phenomena in evolution PDE
职业:演化偏微分方程中的非线性现象
  • 批准号:
    1929029
  • 财政年份:
    2018
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
  • 批准号:
    1904139
  • 财政年份:
    2018
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
International Conference on Partial Differential Equations (COPDE-2015)
国际偏微分方程会议(COPDE-2015)
  • 批准号:
    1535822
  • 财政年份:
    2015
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant

相似国自然基金

磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
  • 批准号:
    40536030
  • 批准年份:
    2005
  • 资助金额:
    120.0 万元
  • 项目类别:
    重点项目

相似海外基金

Global behavior of discrete surfaces via integrability
通过可积性实现离散曲面的全局行为
  • 批准号:
    23K03091
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic behavior of global in time solutions to the viscous conservation laws
粘性守恒定律全局时间解的渐近行为
  • 批准号:
    22K03371
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
X-ray Imaging of the Earth's Magnetosphere : Revealing Global Behavior of the Magnetosphere
地球磁层的 X 射线成像:揭示磁层的全球行为
  • 批准号:
    21H04972
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Specially Promoted Research
Effects of exchange rate fluctuation and global shocks on exporting firms' dynamic behavior
汇率波动和全球冲击对出口企业动态行为的影响
  • 批准号:
    21K01567
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantifying the Global Spatial and Temporal Behavior of Kinetic Alfven Waves in the Auroral Zone
量化极光区动能阿尔文波的全球时空行为
  • 批准号:
    2016788
  • 财政年份:
    2020
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
The relationship between educational behavior of transnational migrants and urban space in the global era
全球化时代跨国移民教育行为与城市空间的关系
  • 批准号:
    20K13265
  • 财政年份:
    2020
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RAPID: Public Responses to Personal and Societal Risk: Attitudes and Behavior on COVID-19 and Global Change
RAPID:公众对个人和社会风险的反应:对 COVID-19 和全球变化的态度和行为
  • 批准号:
    2030800
  • 财政年份:
    2020
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Application of Global Reaction Route Mapping Method to Migration-Behavior Analyses of Lattice Defects and Its Deployment to Real Time Scale Simulations
全局反应路径映射方法在晶格缺陷迁移行为分析中的应用及其在实时尺度模拟中的部署
  • 批准号:
    19K21917
  • 财政年份:
    2019
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Convexity and global behavior of geodesics on Finsler manifolds
Finsler 流形上测地线的凸性和全局行为
  • 批准号:
    18K03314
  • 财政年份:
    2018
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stabilization Control for Collective behavior and Its Global Experiments in Tele-copy Robot
远程复印机器人集体行为稳定控制及其全局实验
  • 批准号:
    18H03763
  • 财政年份:
    2018
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了