Efficient solvers for generalized incompressible flow problems with special emphasis on pressure Schur complement techniques for linearized Navier-Stokes equations and extensions
广义不可压缩流动问题的高效求解器,特别强调线性纳维-斯托克斯方程和扩展的压力舒尔补技术
基本信息
- 批准号:19206589
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2005
- 资助国家:德国
- 起止时间:2004-12-31 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, a large amount of work has been devoted to the problem of solving large (linear) systems in saddle point form. The reason for this interest is the fact that such problems arise in a wide variety of technical and scientific applications. In particular, the increasing popularity of mixed finite element methods in engineering fields such as fluid and solid mechanics has been a major source of such saddle point systems, as they typically arise from, the discretization of incompressible flow problems, for instance described by the Navier-Stokes equations. Because of the ubiquitous nature of saddle point systems, a wide literature exists on the discretization aspects and the numerical solution of such systems for many particular applications as well as in general form. A recent comprehensive survey [M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numerica 2005, pp.1-137] can serve as an introduction to the subject, where one can find enormous pointers to the literature on numerics for saddle point problems. This survey shows that the case of stationary and time-dependent Stokes problems has been more or less solved, while the development of efficient solvers for linearized Navier-Stokes equations including convective parts (Oseen equations) and particularly nonlinear viscosity (nonnewtonian, resp., granular flow), and moreover also for extensions which couple the Navier-Stokes equations with additional quantities (k ¿ e turbulence models, Boussinesq equations, multiphase phenomena, viscoelastic problems, fluid-structure interaction), is still a challenging and important task in the field of numerical flow simulation. In this common project, we will combine the special knowledge from each of both research groups, regarding theoretical as well as algorithmic aspects for the numerical treatment of incompressible fluids, with the aim to develop, to analyse and to implement improved solution strategies. In particular, we will concentrate on flow problems with non-constant, resp., nonlinear viscosity for small up to medium Re numbers as they typically arise in micro devices and milli-reactors. The main solution methodology will be based on pressure Schur complement techniques, which are either constructed via globally defined approximate preconditioners in the pressure space only, or which are based on patch wisely defined operators including the pressure Schur complement of the complete flow equations, but in a local sense. These approaches will be applied to saddle point problems arising from the FEM discretization with stable conforming as well as nonconforming Stokes elements, including various polynomial spaces. We will theoretically analyse the developed solution ethodology and realize the solver components in the FEM package FEATFLOW which directly allows a validation and evaluation for a wide class of prototypical flow configurations in the field of chemical engineering applications.
近年来,大量的工作致力于求解鞍点形式的大型(线性)系统问题。这种兴趣的原因是,这些问题出现在各种各样的技术和科学应用中。特别是,混合有限元方法在流体和固体力学等工程领域的日益普及已经成为这种鞍点系统的主要来源,因为它们通常来自不可压缩流动问题的离散化,例如由Navier-Stokes方程描述。由于鞍点系统的普遍性,在许多特殊应用和一般形式下,鞍点系统的离散化方面和数值解存在大量的文献。最近的一项综合调查[M]。Benzi, G.H. Golub, J. Liesen,鞍点问题的数值解,Acta Numerica 2005, pp.1-137]可以作为该主题的介绍,其中可以找到大量关于鞍点问题数值解的文献。这一调查表明,平稳和时变Stokes问题的情况已经或多或少地得到了解决,而线性化Navier-Stokes方程(包括对流部分(Oseen方程)和特别是非线性粘度(非牛顿方程)的有效求解器的发展。(如颗粒流),以及将Navier-Stokes方程与附加量耦合的扩展(k¿e湍流模型、Boussinesq方程、多相现象、粘弹性问题、流固相互作用)仍然是数值流动模拟领域的一项具有挑战性和重要的任务。在这个共同的项目中,我们将结合两个研究小组在不可压缩流体数值处理方面的理论和算法方面的专业知识,目的是开发、分析和实施改进的解决策略。特别地,我们将集中于非常数流问题,如。,非线性粘度小到中等雷诺数,因为它们通常出现在微型装置和毫微米反应器。主要的解决方法将基于压力舒尔补技术,该技术要么仅在压力空间中通过全局定义的近似预调节器构建,要么基于补丁智能定义的算子,包括完整流动方程的压力舒尔补,但在局部意义上。这些方法将应用于稳定和非协调Stokes单元的有限元离散所引起的鞍点问题,包括各种多项式空间。我们将从理论上分析开发的解决方法,并在FEM软件包中实现求解器组件,该组件可以直接验证和评估化学工程应用领域中广泛的原型流动配置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Stefan Turek其他文献
Professor Dr. Stefan Turek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Stefan Turek', 18)}}的其他基金
Numerical simulation techniques for the efficient and accurate treatment of local fluidic transport processes together with chemical reactions
用于高效、准确地处理局部流体传输过程和化学反应的数值模拟技术
- 批准号:
256652799 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Priority Programmes
Fictitious Boundary Methoden für mehrphasige Strömungsprobleme mit Feststoffpartikeln
固体颗粒多相流问题的虚拟边界法
- 批准号:
210488515 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Numerical simulation of monodisperse droplet generation in pneumatic extension nozzles
气动加长喷嘴中单分散液滴生成的数值模拟
- 批准号:
121056419 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Programmiermodelle und High-Performance Computing für Many-Core Architekturen in der numerischen Simulation
数值模拟中多核架构的编程模型和高性能计算
- 批准号:
20291950 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Numerik für mehrphasige Strömungen mit Feststoffpartikeln
含固体颗粒的多相流数值
- 批准号:
36412424 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Herleitung, Analyse und Realisierung von numerischen Diskretisierungstechniken und effizienten Lösern für Lattice Boltzmann Methoden
格子玻尔兹曼方法的数值离散技术和高效求解器的推导、分析和实现
- 批准号:
5444238 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
Effiziente numerische Simulation zyklisch betriebener instationärer Festbettprozesse unter besonderer Berücksichtigung steiler und schockartiger Fronten sowie direkte Berechnung zyklisch stationärer Zustände
循环运行的非稳态固定床过程的高效数值模拟,特别考虑陡峭和冲击波锋面以及循环静止状态的直接计算
- 批准号:
5433170 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Monolithische ALE-FEM Techniken für Fluid-Struktur-Wechselwirkungen
用于流固耦合的整体 ALE-FEM 技术
- 批准号:
5391522 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Units
Realisierung von robusten Diskretisierungen, schnellen Lösern und effizienten Datenstrukturen für Probleme mit Fluid-Struktur-Wechselwirkung
针对涉及流固耦合的问题实现稳健的离散化、快速求解器和高效的数据结构
- 批准号:
5303006 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
Analysis and postprocessing of space-time compressed flow computations
时空压缩流计算分析与后处理
- 批准号:
5330368 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
- 批准号:
2401159 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Next-Generation Solvers for Complex Microwave Engineering Problems
复杂微波工程问题的下一代求解器
- 批准号:
DP240102682 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Inviting all 21st century problem-solvers: Building equity by de-tracking middle school mathematics instruction
职业:邀请所有 21 世纪的问题解决者:通过打破中学数学教学的轨道来建立公平
- 批准号:
2336391 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
- 批准号:
24K20779 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Application of perfect sampling with SAT/SMT solvers
SAT/SMT 求解器完美采样的应用
- 批准号:
23K10998 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Speeding-up SAT-based Constraint Optimization Solvers
加速基于 SAT 的约束优化求解器
- 批准号:
23K11047 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Delta-Complete SMT Solvers for Learning and Optimization Algorithms
用于学习和优化算法的 Delta-Complete SMT 求解器
- 批准号:
2869702 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Development of Efficient Solvers for Ill-conditioned Nonlinear Equations Using Mixed- and Multiple-precision Floating-point Arithmetic
使用混合和多精度浮点运算开发病态非线性方程的高效求解器
- 批准号:
23K11127 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




