Non-linear partial differential equations, free boundary problems and fractional operators

非线性偏微分方程、自由边界问题和分数算子

基本信息

  • 批准号:
    0901340
  • 负责人:
  • 金额:
    $ 18.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

This project deals with several aspects of the mathematical analysis of nonlinear partial differential equations. A large part of the endeavor is devoted to the study of elliptic and parabolic free boundary problems. The principal investigator is interested in the existence and regularity theory for such problems, and special attention will be paid to investigating the asymptotic behavior of the solutions (such as the long-time behavior and homogenization limits). Another direction of research concerns nonlocal elliptic and parabolic equations, mainly equations involving fractional Laplace operators. In particular, the project will investigate the effects of the nonlocality of these differential operators on well-known phenomena such as front propagation and homogenization. Finally, part of this project is devoted to certain nonlinear elliptic and parabolic equations of third and fourth order. The analysis of such equations is still poorly understood, mainly because of the lack of a maximum principle and other basic properties that their second-order counterparts possess. Developing existence and uniqueness theories for such equations will be one of the main challenges of the project.Nonlinear partial differential equations have applications in physics, biology, economics, engineering, and other areas of science. Free boundary problems, for instance, typically arise in the modeling of physical phenomena that involve interfaces (between two materials) that are changing with time (a good example is the study of the melting of a block of ice). Some free boundary problems discussed in this proposal turn up in the modeling of gas combustion and in the study of fluid flow. A better understanding of the effects of small inhomogeneities in the properties of the medium (for instance, impurities in the ice) is the goal of the "homogenization theory" mentioned earlier. Ultimately, this theory will allow the development of more accurate models to describe a great variety of phenomena. Nonlocal diffusion equations are another type of equation that are commonly used to model a broad range of phenomenon. The principal investigator proposes a new approach to deriving these equations using so-called microscopic (kinetic) models, for which the parameters can be easily related to simple physical quantities. This will lead to better accuracy in the models used by physical scientists. Finally, applications of higher order elliptic and parabolic equations are also numerous. The equations discussed in this proposal have some applications to the modeling of hydraulic fractures (which are used, for example, to propagate rock fractures in oil and gas reservoirs so as to enhance oil recovery) and to the study of biological membranes.
这个项目涉及非线性偏微分方程数学分析的几个方面。很大一部分努力致力于研究椭圆和抛物线自由边界问题。主要研究者对这类问题的存在性和正则性理论感兴趣,并将特别注意研究解的渐近行为(如长时间行为和齐次化极限)。另一个研究方向是非局部椭圆型和抛物型方程,主要是涉及分数阶拉普拉斯算子的方程。特别是,该项目将调查这些微分算子的非局域性对诸如前沿传播和均匀化等众所周知的现象的影响。最后,本课题的一部分内容是研究一类三阶和四阶非线性椭圆型和抛物型方程。对这类方程的分析仍然知之甚少,主要是因为缺乏极大值原理和它们的二阶对应方程所具有的其他基本性质。发展这类方程的存在性和唯一性理论将是该项目的主要挑战之一。非线性偏微分方程组在物理、生物、经济、工程和其他科学领域都有应用。例如,自由边界问题通常出现在涉及(两种材料之间的)界面的物理现象的建模中,这些界面随时间变化(一个很好的例子是研究冰块的融化)。本文讨论的一些自由边界问题出现在气体燃烧的模拟和流体流动的研究中。更好地理解介质性质中的微小不均匀性(例如,冰中的杂质)的影响是前面提到的“均质化理论”的目标。最终,这一理论将允许开发更准确的模型来描述各种现象。非局部扩散方程是另一种类型的方程,通常用于对广泛的现象进行建模。首席研究人员提出了一种新的方法来使用所谓的微观(动力学)模型来推导这些方程,对于这些模型,参数可以很容易地与简单的物理量相关联。这将提高物理学家使用的模型的准确性。最后,高阶椭圆型和抛物型方程的应用也很多。本建议中讨论的方程在水力压裂(例如,用来扩展油气藏中的岩石裂缝以提高石油采收率)的建模和生物膜的研究中有一些应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Antoine Mellet其他文献

A bound from below for the temperature in compressible Navier–Stokes equations
  • DOI:
    10.1007/s00605-008-0021-y
  • 发表时间:
    2008-08-07
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Antoine Mellet;Alexis Vasseur
  • 通讯作者:
    Alexis Vasseur

Antoine Mellet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Antoine Mellet', 18)}}的其他基金

Free Boundary Problems for Aggregation Phenomena and other Partial Differential Equations
聚集现象和其他偏微分方程的自由边界问题
  • 批准号:
    2307342
  • 财政年份:
    2023
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Free Boundary Problems for Cell Motility and Other Applications
细胞运动和其他应用的自由边界问题
  • 批准号:
    2009236
  • 财政年份:
    2020
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Free Boundary Problems and Other Partial Differential Equations
自由边界问题和其他偏微分方程
  • 批准号:
    1501067
  • 财政年份:
    2015
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Free boundary problems for capillary surfaces and other nonlinear evolution PDE
毛细管表面和其他非线性演化偏微分方程的自由边界问题
  • 批准号:
    1201426
  • 财政年份:
    2012
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Thematic Program and Summer School in Partial Differential Equations and Applications; Summer 2009; Vancouver, Canada
偏微分方程及其应用专题课程和暑期学校;
  • 批准号:
    0901718
  • 财政年份:
    2009
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
全纯Mobius变换及其在相对论和信号分析中的应用
  • 批准号:
    11071230
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
枢纽港选址及相关问题的算法设计
  • 批准号:
    71001062
  • 批准年份:
    2010
  • 资助金额:
    17.6 万元
  • 项目类别:
    青年科学基金项目
MIMO电磁探测技术与成像方法研究
  • 批准号:
    40774055
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
统计过程控制图的设计理论及其应用
  • 批准号:
    10771107
  • 批准年份:
    2007
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-linear partial differential equations, stochastic representations, and numerical approximation by deep learning
非线性偏微分方程、随机表示和深度学习数值逼近
  • 批准号:
    EP/W004070/1
  • 财政年份:
    2021
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Research Grant
Regularity, Stability, and Uniqueness Questions for Certain Non-Linear Partial Differential Equations
某些非线性偏微分方程的正则性、稳定性和唯一性问题
  • 批准号:
    1956092
  • 财政年份:
    2020
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Singularity formations in non linear partial differential equations
非线性偏微分方程中的奇异性形成
  • 批准号:
    2278691
  • 财政年份:
    2019
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Studentship
Analysis of Non-Linear Partial Differential Equations in Free Boundary Fluid Dynamics and Kinetic Theory
自由边界流体动力学和运动理论中非线性偏微分方程的分析
  • 批准号:
    1764177
  • 财政年份:
    2018
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Structure of the solutions to non-linear hyperbolic partial differential equations derived from astrophysics
天体物理学非线性双曲偏微分方程解的结构
  • 批准号:
    18K03371
  • 财政年份:
    2018
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-linear partial differential equations: Bubbles, layers and stability
非线性偏微分方程:气泡、层和稳定性
  • 批准号:
    DP170103087
  • 财政年份:
    2017
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Discovery Projects
Towards de Giorgi-Nash-Moser theory on non-linear non-local partial differential equations.
走向非线性非局部偏微分方程的 de Giorgi-Nash-Moser 理论。
  • 批准号:
    24654033
  • 财政年份:
    2012
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Analysis of non-linear partial differential equations in Kinetic theory and related fields
运动理论及相关领域非线性偏微分方程分析
  • 批准号:
    1200747
  • 财政年份:
    2012
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Non-linear partial differential equations in geometry
几何中的非线性偏微分方程
  • 批准号:
    1104536
  • 财政年份:
    2011
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Continuing Grant
Homogenisation of non-linear partial differential equations
非线性偏微分方程的齐次化
  • 批准号:
    391945-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了