Non-linear partial differential equations in geometry
几何中的非线性偏微分方程
基本信息
- 批准号:1104536
- 负责人:
- 金额:$ 79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, the principal investigators will study several higher-order nonlinear partial differential equations that arise in conformal geometry and Cauchy-Riemann (CR) geometry. These equations describe the effect on the curvatures of the new structures of making conformal changes of metrics (as in conformal geometry) or of contact forms (as in CR-geometry). Of particular interest are equations that prescribe higher-order curvature invariants that control the global geometry of higher dimensional manifolds. The project seeks to develop new tools to solve these equations and to describe the behavior of the solutions. A key difficulty in handling such equations is the absence of a maximum principle, and the principal investigators propose to compensate for its absence by using integral inequalities as the main working tool. It is expected that the study will yield extensions of the well-known mixed volume inequalities to more general domains in Euclidean space, as well as sharp Sobolev inequalities in CR-geometry.The goal of this project is to provide new insights into and to create new tools for the study of the theory of geometric partial differential equations, a subject that has evolved into a basic toolbox in many areas in mathematics, applied mathematics, and engineering, to say nothing of mathematical physics. One of the main topics of study in the project (namely, the existence of so-called Einstein space) is motivated by a conjecture that physicists call the "holography principle." It asserts that the results of any measurements of the physical universe in the Einstein space can be predicted by taking another set of measurements near the "far end" of the universe (which is referred to as its "boundary"). A case of particular interest is the situation when the boundary space is three-dimensional, a case in which geometric understanding is already well developed. The project will engage graduate students and postdocs in its research activities.
在这个项目中,主要研究人员将研究几个高阶非线性偏微分方程,出现在共形几何和柯西-黎曼(CR)几何。这些方程描述了对新结构的曲率进行共形改变的度量(如在共形几何中)或接触形式(如在CR几何中)的影响。特别令人感兴趣的是方程,规定高阶曲率不变量,控制全局几何的高维流形。该项目旨在开发新工具来求解这些方程并描述解的行为。在处理这样的方程的一个关键困难是最大值原理的缺乏,和主要的研究人员提出,以弥补其缺乏使用积分不等式作为主要的工作工具。预计该研究将产生著名的混合体积不等式扩展到更一般的领域在欧几里德空间,以及尖锐的Sobolev不等式在CR几何。该项目的目标是提供新的见解,并创造新的工具,为研究几何偏微分方程的理论,一个主题,已演变成一个基本的工具箱在许多领域的数学,应用数学和工程学,更不用说数学物理学了。该项目的主要研究课题之一(即所谓的爱因斯坦空间的存在性)是由物理学家称之为“全息原理”的猜想所激发的。它断言,在爱因斯坦空间中对物理宇宙的任何测量结果都可以通过在宇宙的“远端”(称为其“边界”)附近进行另一组测量来预测。一个特别令人感兴趣的情况是当边界空间是三维时的情况,在这种情况下,几何理解已经得到了很好的发展。该项目将吸引研究生和博士后参与其研究活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alice Chang其他文献
Would You Like It Hot or Cold? An Analysis of U.S.-China Climate Policy
您想要热的还是冷的?
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Alice Chang - 通讯作者:
Alice Chang
Initiation of Gender-Affirming Testosterone Therapy in a Lactating Transgender Man
对哺乳期跨性别男性进行性别肯定睾酮治疗
- DOI:
10.1177/08903344211037646 - 发表时间:
2021 - 期刊:
- 影响因子:2.6
- 作者:
Sara Oberhelman;Alice Chang;Cesar A Gonzalez;Andrew Braith;Ravinder J Singh;A. Lteif - 通讯作者:
A. Lteif
Short Term Radiographic and Patient Outcomes of a Biplanar Plating System for Triplanar Hallux Valgus Correction
- DOI:
10.1053/j.jfas.2020.06.026 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:
- 作者:
Kshitij Manchanda;Alice Chang;Blake Wallace;Junho Ahn;Yin Xi;George T. Liu;Katherine Raspovic;Michael Van Pelt;Avneesh Chhabra;Dane Wukich;Trapper Lalli - 通讯作者:
Trapper Lalli
Acridinium-Labeling to Latex Microparticles and Application in Chemiluminescence-Based Instrumentation
乳胶微粒的吖啶标记及其在化学发光仪器中的应用
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
D. Shah;T. Chandra;Alice Chang;Kurt Klosterman;R. Richerson;Charles Keller - 通讯作者:
Charles Keller
Acute treatment of bipolar depression with adjunctive zonisamide: a retrospective chart review.
佐尼沙胺辅助治疗双相抑郁症的急性治疗:回顾性图表回顾。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:5.4
- 作者:
C. Baldassano;S. Ghaemi;Alice Chang;Alan Lyman;Melissa Lipari - 通讯作者:
Melissa Lipari
Alice Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alice Chang', 18)}}的其他基金
Geometric Invariance and Partial Differential Equations
几何不变性和偏微分方程
- 批准号:
1802285 - 财政年份:2018
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
Geometry and Analysis of Differentiable Manifolds
可微流形的几何与分析
- 批准号:
1607091 - 财政年份:2016
- 资助金额:
$ 79万 - 项目类别:
Continuing Grant
Partial differential equations for manifolds with boundary
有边界流形的偏微分方程
- 批准号:
1509505 - 财政年份:2015
- 资助金额:
$ 79万 - 项目类别:
Continuing Grant
Partial differential equations in conformal and CR geometry
共形和 CR 几何中的偏微分方程
- 批准号:
0758601 - 财政年份:2008
- 资助金额:
$ 79万 - 项目类别:
Continuing Grant
Non-linear Partial Differential Equations and Applications to Problems in Geometry
非线性偏微分方程及其在几何问题中的应用
- 批准号:
0245266 - 财政年份:2003
- 资助金额:
$ 79万 - 项目类别:
Continuing Grant
Some impact of topology on variational problems
拓扑对变分问题的一些影响
- 批准号:
0209504 - 财政年份:2002
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
Higher Order Elliptic Operators and Applications to Problems in Conformal Geometry
高阶椭圆算子及其在共形几何问题中的应用
- 批准号:
0070542 - 财政年份:2000
- 资助金额:
$ 79万 - 项目类别:
Continuing Grant
On a Fourth Order PDE - Some Analytic and Geometric Aspects
关于四阶偏微分方程 - 一些解析和几何方面
- 批准号:
9706864 - 财政年份:1997
- 资助金额:
$ 79万 - 项目类别:
Continuing Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
全纯Mobius变换及其在相对论和信号分析中的应用
- 批准号:11071230
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
枢纽港选址及相关问题的算法设计
- 批准号:71001062
- 批准年份:2010
- 资助金额:17.6 万元
- 项目类别:青年科学基金项目
MIMO电磁探测技术与成像方法研究
- 批准号:40774055
- 批准年份:2007
- 资助金额:35.0 万元
- 项目类别:面上项目
统计过程控制图的设计理论及其应用
- 批准号:10771107
- 批准年份:2007
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Non-linear partial differential equations, stochastic representations, and numerical approximation by deep learning
非线性偏微分方程、随机表示和深度学习数值逼近
- 批准号:
EP/W004070/1 - 财政年份:2021
- 资助金额:
$ 79万 - 项目类别:
Research Grant
Regularity, Stability, and Uniqueness Questions for Certain Non-Linear Partial Differential Equations
某些非线性偏微分方程的正则性、稳定性和唯一性问题
- 批准号:
1956092 - 财政年份:2020
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
Singularity formations in non linear partial differential equations
非线性偏微分方程中的奇异性形成
- 批准号:
2278691 - 财政年份:2019
- 资助金额:
$ 79万 - 项目类别:
Studentship
Analysis of Non-Linear Partial Differential Equations in Free Boundary Fluid Dynamics and Kinetic Theory
自由边界流体动力学和运动理论中非线性偏微分方程的分析
- 批准号:
1764177 - 财政年份:2018
- 资助金额:
$ 79万 - 项目类别:
Standard Grant
Structure of the solutions to non-linear hyperbolic partial differential equations derived from astrophysics
天体物理学非线性双曲偏微分方程解的结构
- 批准号:
18K03371 - 财政年份:2018
- 资助金额:
$ 79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-linear partial differential equations: Bubbles, layers and stability
非线性偏微分方程:气泡、层和稳定性
- 批准号:
DP170103087 - 财政年份:2017
- 资助金额:
$ 79万 - 项目类别:
Discovery Projects
Towards de Giorgi-Nash-Moser theory on non-linear non-local partial differential equations.
走向非线性非局部偏微分方程的 de Giorgi-Nash-Moser 理论。
- 批准号:
24654033 - 财政年份:2012
- 资助金额:
$ 79万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Analysis of non-linear partial differential equations in Kinetic theory and related fields
运动理论及相关领域非线性偏微分方程分析
- 批准号:
1200747 - 财政年份:2012
- 资助金额:
$ 79万 - 项目类别:
Continuing Grant
Homogenisation of non-linear partial differential equations
非线性偏微分方程的齐次化
- 批准号:
391945-2010 - 财政年份:2011
- 资助金额:
$ 79万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Weighted Estimates for the Solutions of Non-linear Partial Differential Equations
非线性偏微分方程解的加权估计
- 批准号:
EP/H051368/1 - 财政年份:2010
- 资助金额:
$ 79万 - 项目类别:
Research Grant