Tribologically-Enhanced Encapsulated Microball Bearings for Reduced Friction and Wear in High-Performance Rotary Microactuators and PowerMEMS Devices
摩擦学增强型封装微球轴承可减少高性能旋转微执行器和 PowerMEMS 设备中的摩擦和磨损
基本信息
- 批准号:0901411
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Tribologically-Enhanced Encapsulated Microball Bearings for Reduced Friction and Wear in High-Performance Rotary Microactuators and PowerMEMS DevicesProposal Number: 0901411University of Maryland College ParkPI: Reza Ghodssi, Co-PI: Matthew McCarthyAbstractSummaryThe objective of this work is to develop high-performance rotary ball bearings for Microelectromechanical Systems (MEMS) using tribologically-enhanced thin-film coatings. Particular emphasis will be on the design, fabrication, and experimental characterization of UltraNanoCrystalline Diamond (UNCD), Silicon Carbide (SiC), Titanium Nitride (TiN), and Boron Nitride (BN) films as hard-coatings to reduce friction and wear in microscale rolling contacts. The results of this will be implemented in a low-friction, low-wear, and long-lifecycle microball bearing for rotary microactuators and PowerMEMS devices. These support mechanisms will be capable of continuous operation for speeds in excess of 100,000rpm and provide the stability and reliability necessary for the realization of high-speed micro-turbogenerators as well as accurate rotary positioning systems for directional sensors.Intellectual Merits The work proposed here constitutes fundamental research into the science and engineering of microfabricated ball bearing support mechanism including the effects of hard coatings to reduce friction and wear. It will specifically lead to reliable support mechanisms for use within various rotary MEMS devices. The design and engineering of MEMS-fabricated ball bearings using hard-coatings will allow the realization of these technologies for high-performance applications. The in-situ experimental investigation proposed here will comprehensively address the effects of materials, loading, and operation on microfabricated rotary bearings. This will be achieved through (1) bearing design and fabrication using thin-film coatings, (2) in-situ experimental characterization using integrated microturbine actuation, and (3) implementation of optimized bearings in microfabricated rotary actuators and PowerMEMS devices.Broader Impacts Research This technology will yield a low-friction/wear microball support mechanism necessary for the realization of several high-performance rotary micromachines. Ongoing research is being conducted on the development of compact micro-turbogenerators for small-scale cost-effective power generation and rotary actuator platforms for directional sensor systems. The reliable demonstration of such devices over long life-cycles would have a substantial impact on distributed autonomous systems such as micro-air-vehicles, portable power systems, and sensor networks.EducationThis research will complement the university?s well-established research and education programs in materials science and MEMS. The interdisciplinary scope of the proposed research covers three major areas: Materials, Electrical, and Mechanical Engineering. The project offers an excellent opportunity to engage senior undergraduate and graduate students in masters and doctoral-level research on materials engineering and its broader impact on the MEMS field. The PI has developed a two-semester multidisciplinary graduate-level course with an active laboratory component (Design, Fabrication, and Testing of MEMS and Microsystems). The proposed research will strengthen ongoing work developing ball-bearing supported micromachines in the PI?s group, the MEMS Sensors and Actuators Laboratory (MSAL), as well as the Maryland Nanocenter. The PI supervises a number of undergraduate and graduate students, the majority of whom are US citizens. The co-PI is a former NSF GK-12 Teaching Fellow, and currently a postdoctoral researcher. These activities will directly impact the nature of the interdisciplinary research curriculum, recruitment of outstanding students, and dissemination of knowledge through conferences and refereed journal publication
摩擦学增强封装微球轴承减少摩擦和磨损的高性能旋转微执行器和PowerMEMS设备提案编号:0901411马里兰州大学帕克PI:礼萨Ghodssi,共同PI:马修麦卡锡摘要这项工作的目的是开发高性能的旋转球轴承微机电系统(MEMS)使用摩擦学增强薄膜涂层。特别强调的是设计,制造和实验表征的UltraNanoCrystalline金刚石(UNCD),碳化硅(SiC),氮化钛(TiN)和氮化硼(BN)薄膜作为硬涂层,以减少摩擦和磨损的微尺度滚动接触。其结果将在用于旋转微致动器和PowerMEMS器件的低摩擦、低磨损和长生命周期微球轴承中实现。这些支撑机构将能够在超过100,000 rpm,并提供实现高速微电子所需的稳定性和可靠性。涡轮发电机以及方向传感器的精确旋转定位系统。智力优点这里提出的工作构成了对微制造滚珠轴承支撑机制的科学和工程的基础研究,包括硬涂层以减少摩擦和磨损。它将特别导致在各种旋转MEMS器件内使用的可靠支撑机构。使用硬涂层的MEMS制造的球轴承的设计和工程将允许实现这些技术的高性能应用。在这里提出的原位实验研究将全面解决材料,负载和操作的影响,微型旋转轴承。这将通过(1)使用薄膜涂层的轴承设计和制造,(2)使用集成微型涡轮驱动的原位实验表征,以及(3)在微加工旋转致动器和PowerMEMS设备中实施优化轴承来实现。更广泛的影响研究这项技术将产生实现几种高性能旋转微机械所必需的低摩擦/磨损微球支撑机制。目前正在进行研究,以开发用于小规模成本效益发电的小型微型涡轮发电机和用于方向传感器系统的旋转致动器平台。这种设备在长寿命周期的可靠演示将对分布式自主系统,如微型空中交通工具,便携式电源系统和传感器网络产生重大影响。在材料科学和MEMS方面,该公司拥有完善的研究和教育计划。拟议研究的跨学科范围涵盖三个主要领域:材料,电气和机械工程。该项目提供了一个很好的机会,让高年级本科生和研究生参与材料工程及其对MEMS领域更广泛影响的硕士和博士研究。PI开发了一个两学期的多学科研究生课程,其中包括一个活跃的实验室组件(MEMS和微系统的设计,制造和测试)。拟议的研究将加强正在进行的工作,开发滚珠轴承支持的微机械在PI?的小组,MEMS传感器和致动器实验室(MSAL),以及马里兰州纳米中心。PI监督一些本科生和研究生,其中大多数是美国公民。共同PI是前NSF GK-12教学研究员,目前是博士后研究员。这些活动将直接影响跨学科研究课程的性质、优秀学生的招募以及通过会议和期刊出版传播知识
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reza Ghodssi其他文献
Electrochemical Sensor for Ingestible Capsule-Based In-Vivo Detection of Hydrogen Sulfide
用于基于可摄入胶囊的硫化氢体内检测的电化学传感器
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Justin M. Stine;Katie L Ruland;Joshua A. Levy;Luke A. Beardslee;Reza Ghodssi - 通讯作者:
Reza Ghodssi
An ingestible bioimpedance sensing device for wireless monitoring of epithelial barriers
一种用于上皮屏障无线监测的可摄取生物阻抗传感装置
- DOI:
10.1038/s41378-025-00877-8 - 发表时间:
2025-02-07 - 期刊:
- 影响因子:9.900
- 作者:
Brian M. Holt;Justin M. Stine;Luke A. Beardslee;Hammed Ayansola;Younggeon Jin;Pankaj J. Pasricha;Reza Ghodssi - 通讯作者:
Reza Ghodssi
Development of ground-testable phase fresnel lenses in silicon
- DOI:
10.1007/s10686-006-9030-9 - 发表时间:
2006-07-26 - 期刊:
- 影响因子:2.200
- 作者:
John Krizmanic;Brian Morgan;Robert Streitmatter;Neil Gehrels;Keith Gendreau;Zaven Arzoumanian;Reza Ghodssi;Gerry Skinner - 通讯作者:
Gerry Skinner
Anchoring Injector for Prolonged Dosing of Drugs in the Gastrointestinal Tract
用于在胃肠道中延长药物剂量的锚定注射器
- DOI:
10.1109/mems58180.2024.10439389 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Joshua A. Levy;Michael A. Straker;Adira Colton;R. Sochol;Reza Ghodssi - 通讯作者:
Reza Ghodssi
Seropill: Novel Minimally Invasive Ingestible Capsule for Serotonin Sensing in the GI Tract
Seropill:用于胃肠道血清素传感的新型微创可摄入胶囊
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Michael A. Straker;Joshua A. Levy;Justin M. Stine;Jin;Luke A. Beardslee;Reza Ghodssi - 通讯作者:
Reza Ghodssi
Reza Ghodssi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reza Ghodssi', 18)}}的其他基金
Closed-Loop Sensing and Actuation for Gastrointestinal Capsule Systems
胃肠胶囊系统的闭环传感和驱动
- 批准号:
1939236 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
NCS-FO: Developing engineering solutions to investigate microbiome-to-neuron communication
NCS-FO:开发工程解决方案来研究微生物组与神经元的通讯
- 批准号:
1926793 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Development of Flexible Microsystems for Bacterial Biofilm Management
开发用于细菌生物膜管理的灵活微系统
- 批准号:
1809436 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Planning Grant: Engineering Research Center for Adaptive Small-systems for data Analytic Pain Management (ERC-ASAP)
规划资助:数据分析疼痛管理自适应小型系统工程研究中心(ERC-ASAP)
- 批准号:
1840468 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
EAGER: Gut-Nav: A Gut Navigator for Real-Time Diagnostic Reporting on Gastro-Intestinal Health
EAGER:Gut-Nav:胃肠道健康实时诊断报告的肠道导航器
- 批准号:
1738211 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
NSF Workshop on Micro, Nano, Bio Systems: Building on the Past and Planning for the Future,March 30-31,2012, Arlington, VA
NSF 微型、纳米、生物系统研讨会:立足过去并规划未来,2012 年 3 月 30 日至 31 日,弗吉尼亚州阿灵顿
- 批准号:
1229396 - 财政年份:2012
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Workshop: 9th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications; Silver Spring, Maryland; December 1-4, 2009
研讨会:第九届发电和能源转换应用微纳米技术国际研讨会;
- 批准号:
0968832 - 财政年份:2010
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Nanofabrication Using Viral Biotemplates for MEMS Applications
使用病毒生物模板进行 MEMS 应用的纳米加工
- 批准号:
0927693 - 财政年份:2009
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
SGER: Integrated Indium Phosphide Based Microsystem for Chemical Sensing
SGER:用于化学传感的集成磷化铟微系统
- 批准号:
0841058 - 财政年份:2008
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
SGER: Integrated InP Microcantilever Biosensors Using Chitosan Interface Layer
SGER:使用壳聚糖界面层的集成 InP 微悬臂梁生物传感器
- 批准号:
0701024 - 财政年份:2007
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似海外基金
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
- 批准号:
2335500 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Enhanced Drug Repositioningを用いた肝硬変合併症に対する同時制御治療法の開発
使用增强药物重新定位开发肝硬化并发症同步控制疗法
- 批准号:
24K11137 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
STTR Phase I: Microwave-Enhanced Modular Ammonia Synthesis
STTR 第一阶段:微波增强模块化氨合成
- 批准号:
2335104 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
- 批准号:
2323984 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Digitally Assisted Power Amplifier Design with Enhanced Energy Efficiency
具有增强能效的数字辅助功率放大器设计
- 批准号:
LP220200906 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Linkage Projects
Revolutionary Soft Surfboards - Advanced UK low carbon manufacturing for enhanced durability and 100% recyclability
革命性%20Soft%20冲浪板%20-%20Advanced%20UK%20low%20carbon%20制造%20for%20增强%20耐用性%20和%20100%%20可回收性
- 批准号:
10095272 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Collaborative R&D
ENTICE: Enhanced Ammonia Cracking to Improve Engine Combustion and Emissions
ENTICE:增强氨裂解以改善发动机燃烧和排放
- 批准号:
10096979 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Collaborative R&D
AI4PEX: Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models
AI4PEX:人工智能和机器学习,用于增强地球系统模型中过程和极值的表示
- 批准号:
10103109 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
EU-Funded
SENSORBEES: Sensorbees are ENhanced Self-ORganizing Bio-hybrids for Ecological and Environmental Surveillance
传感器蜂:传感器蜂是用于生态和环境监测的增强型自组织生物杂交体
- 批准号:
10109956 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
EU-Funded