Collaborative: Regenerative Nanosensors for Quantitative Assessment of Oxidative Stress in Neurodegeneration
合作:用于定量评估神经退行性疾病中氧化应激的再生纳米传感器
基本信息
- 批准号:0901503
- 负责人:
- 金额:$ 34.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual MeritReactive oxygen species (ROS) and oxidative stress are major contributors to the pathogenesis of important neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and cerebrovascular disease. The central nervous system comprises the most oxidatively active organ system in the body. Under normal physiological conditions, brain activity- and the neuronal and synaptic processes underpinning this activity- generates free radical species that progressively damage essential biomolecules (nucleic acids, lipids, proteins). Under a variety of pathological states, ROS-mediated oxidative damage is dramatically accelerated and leads to irreversible brain damage, cerebral dysfunction, cognitive decline, and death. An overwhelming body of scientific evidence now points to ROS-mediated oxidative damage as a key pathogenic pathway involved in the earliest stages of many neurodegenerative diseases. Technology to quantitatively detect and monitor ROS is critical for understanding and treating these disorders, Currently available ROS assay systems (1) detect only a single (or at most a limited number) of biological relevant species, (2) chemically interact with the species under analysis, (3) require complex, time-consuming, labor-intensive analytical processing, and (4) are temporally disconjugate with respect to the short half-lives of most biologically relevant ROS species. This last point is especially important and frequently overlooked. By the time analytical measurements are initiated using conventional methods, significant loss of signal has accrued due to decomposition. For all of these reasons, available ROS detection technology does not meet the analytical standards required for modern biomedical research. A transformative research program to develop an innovative nanotechnology-based toolkit for measuring ROS in biological systems is proposed. A non-enzymatic probe (nanoceria), integrated sensor components, and simplified detection procedure will enable sequential analytical operation on a small, inexpensive chip. An outstanding merit of the proposed approach is the use of a versatile nanoparticle detector array that generates a detectable amperometric signal following oxidation state alterations induced by interaction with ROS. The proposed technology development program will enable fundamental studies of neurodegenerative disease pathogenesis that have not been previously possible. Broader ImpactThe outcome of this research is linked to high-impact national healthcare priorities. The program will establish an interdisciplinary collaboration between the University of Central Florida; Boston University School of Medicine, College of Engineering, and Photonics Center; and the National Institutes of Health (NIH)-funded Alzheimer's Disease Center at Boston University. Education and training are essential components and leverages graduate and undergraduate teaching opportunities, coursework (including a highly successful internet-based off-site access program), and summer research programming. Additional emphasis will focus on minority and K-12 students who participate in on-campus interdisciplinary educational programs at both institutions. The proposed research and educational activities will provide a unique cross-dimensional (nano-to-meso scale) and cross-disciplinary (materials, electrochemistry, fluid mechanics, electrical engineering, neurobiology) approach for development of innovative non-enzyme biosensors with far-ranging biomedical impact. This research will deepen understanding of electrochemical and biochemical reactions at the nanoscale and affords significant potential to provide new insights into the pathogenic role of ROS in human neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and stroke.
活性氧(ROS)和氧化应激是阿尔茨海默病、帕金森病和脑血管病等重要神经退行性疾病发病机制的主要贡献者。中枢神经系统是人体内氧化活性最高的器官系统。在正常的生理条件下,大脑活动——以及支撑这种活动的神经元和突触过程——会产生自由基,这些自由基会逐渐损害基本的生物分子(核酸、脂质、蛋白质)。在多种病理状态下,ros介导的氧化损伤显著加速,导致不可逆的脑损伤、脑功能障碍、认知能力下降和死亡。大量的科学证据表明,ros介导的氧化损伤是许多神经退行性疾病早期阶段的关键致病途径。定量检测和监测ROS的技术对于理解和治疗这些疾病至关重要,目前可用的ROS检测系统(1)只能检测单一(或最多有限数量)的生物相关物种,(2)与被分析物种发生化学相互作用,(3)需要复杂、耗时、劳动密集型的分析处理,(4)相对于大多数生物相关ROS物种的短半衰期,它们在时间上是不偶联的。最后一点尤其重要,但经常被忽视。当使用常规方法开始分析测量时,由于分解已经产生了显著的信号损失。由于这些原因,现有的ROS检测技术不能满足现代生物医学研究所需的分析标准。提出了一项变革性的研究计划,以开发一种创新的基于纳米技术的工具包,用于测量生物系统中的ROS。一个非酶探针(纳米粒),集成的传感器组件,和简化的检测程序将使顺序分析操作在一个小的,廉价的芯片。该方法的一个突出优点是使用多功能纳米粒子探测器阵列,在与活性氧相互作用引起的氧化态改变后产生可检测的安培信号。拟议的技术开发计划将使神经退行性疾病发病机制的基础研究成为可能,这在以前是不可能的。更广泛的影响本研究的结果与高影响力的国家卫生保健优先事项有关。该项目将在中佛罗里达大学;波士顿大学医学院、工程学院和光子学中心;以及美国国立卫生研究院(NIH)资助的波士顿大学阿尔茨海默病中心。教育和培训是必不可少的组成部分,并充分利用研究生和本科生的教学机会、课程作业(包括一个非常成功的基于互联网的非现场访问计划)和暑期研究计划。额外的重点将集中在少数民族和K-12学生谁参加在这两个机构的校园跨学科教育项目。拟议的研究和教育活动将提供一个独特的跨维度(纳米到中观尺度)和跨学科(材料、电化学、流体力学、电气工程、神经生物学)的方法,以开发具有广泛生物医学影响的创新非酶生物传感器。这项研究将加深对纳米级电化学和生化反应的理解,并为ROS在人类神经退行性疾病(包括阿尔茨海默病、帕金森病和中风)中的致病作用提供重要的新见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyoung Jin Cho其他文献
Hyoung Jin Cho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyoung Jin Cho', 18)}}的其他基金
HSI Implementation and Evaluation Project: Enhancing Student Success in Engineering Curriculum through Active e-Learning and High Impact Teaching Practices
HSI 实施和评估项目:通过积极的电子学习和高影响力的教学实践提高学生在工程课程中的成功
- 批准号:
2225208 - 财政年份:2022
- 资助金额:
$ 34.65万 - 项目类别:
Standard Grant
IRES Track 1: Low-Dimensional Materials for Transducers
IRES 轨道 1:用于换能器的低维材料
- 批准号:
2153228 - 财政年份:2022
- 资助金额:
$ 34.65万 - 项目类别:
Standard Grant
RET Site: Collaborative Multidisciplinary Engineering Design Experiences for Teachers (CoMET)
RET 网站:教师协作多学科工程设计经验 (CoMET)
- 批准号:
1611019 - 财政年份:2016
- 资助金额:
$ 34.65万 - 项目类别:
Standard Grant
Droplet Thermotaxis: A New Platform Technology for Droplet-based Microfluidic Systems
液滴趋热性:基于液滴的微流体系统的新平台技术
- 批准号:
1102280 - 财政年份:2011
- 资助金额:
$ 34.65万 - 项目类别:
Continuing Grant
NUE: Preparing Undergraduates for Careers in Nanotechnology
NUE:为本科生从事纳米技术职业做好准备
- 批准号:
0741508 - 财政年份:2008
- 资助金额:
$ 34.65万 - 项目类别:
Standard Grant
MRI: Acquisition of NIL (Nanoimprint Lithography) System
MRI:获得 NIL(纳米压印光刻)系统
- 批准号:
0521497 - 财政年份:2005
- 资助金额:
$ 34.65万 - 项目类别:
Standard Grant
CAREER: A Micro SPR (Surface Plasmon Resonance) Sensor with Integrated Microfluidic Components for In-Situ Monitoring of Biomolecular Activities
职业:具有集成微流体组件的微型 SPR(表面等离子共振)传感器,用于生物分子活动的原位监测
- 批准号:
0348603 - 财政年份:2004
- 资助金额:
$ 34.65万 - 项目类别:
Continuing Grant
相似国自然基金
面向超高性能混凝土的再生纳米材料制备与性能研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
超声驱动MoS2/PCL压电支架调节骨诱导-骨免疫促进骨再生的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
失效磷酸铁锂正极材料直接修复再生技术
- 批准号:JCZRLH202501186
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
GPR17抑制IL-33/ST2调控髓鞘再生在血管性认知障碍中的作用和机制研究
- 批准号:JCZRQN202500691
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
电氢综合能源系统时空协同调控关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于氢键有机框架的拉曼-比色双通道可再生传感平台的构建与应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
止脱茁发方通过Ptprz1介导PI3K/AKT通路调节毛乳头细胞自噬促进毛囊再生的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Wnt4诱导毛囊干细胞迁移促进创伤后毛囊再生的作用与机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
再生铝液输送长效保温与凝固机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
退役磷酸铁锂电池高效浸出及再生机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
A new vascular regenerative therapy for myocardial ischemia using intergin-specific circulating monocytes
使用intergin特异性循环单核细胞治疗心肌缺血的新血管再生疗法
- 批准号:
24K19425 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
HAIRCYCLE: a pilot study to explore and test regenerative, local, bio-based and circular models for human hair waste
HAIRCYCLE:一项试点研究,旨在探索和测试人类毛发废物的再生、局部、生物基和循环模型
- 批准号:
AH/Z50550X/1 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Research Grant
NSF Engines: Piedmont Triad Regenerative Medicine Engine
NSF 引擎:Piedmont Triad 再生医学引擎
- 批准号:
2315654 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Cooperative Agreement
REGENYSYS: Designing regenerative regional living systems - enabling a circular bioeconomy of wellbeing in the Thames Estuary
REGENYSYS:设计再生区域生命系统 - 实现泰晤士河口福祉的循环生物经济
- 批准号:
ES/Z502819/1 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Research Grant
Develop novel-processing for the use of paludiculture biomass as an alternative feedstock for regenerative pulp production.
开发利用沼生生物质作为再生纸浆生产替代原料的新工艺。
- 批准号:
10102591 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Investment Accelerator
Quantifying the benefits of regenerative agricultural practices
量化再生农业实践的好处
- 批准号:
BB/Z514342/1 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Training Grant
The effects of human lower limb immobilization on regenerative skeletal muscle stem cell characteristics in vitro
人体下肢固定对体外再生骨骼肌干细胞特性的影响
- 批准号:
MR/Y033787/1 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track K: Living Matter, Artificial Intelligence, and Water Nascency (LAWN) for Regenerative Environments and Equity
NSF 融合加速器轨道 K:用于再生环境和公平的生命物质、人工智能和水新生 (LAWN)
- 批准号:
2344488 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Standard Grant
Regenerative biomaterial patches for failing hearts
用于衰竭心脏的再生生物材料贴片
- 批准号:
MR/X024210/1 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Fellowship
Heat Utilisation via Thermally Regenerative Electrochemical System
通过热再生电化学系统进行热量利用
- 批准号:
EP/X015920/2 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Research Grant