Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
基本信息
- 批准号:0901802
- 负责人:
- 金额:$ 50.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
SouganidisThe modeling of multi-scale phenomena necessitates the use of random media (periodicity is a rather restrictive structure for many applications) and requires the study of averaged (mesoscopic and macroscopic) behaviors. For complex phenomena, it is also very common to have only \statistical? (random) and not \exact? (deterministic) information. In addition, incorporating the fluctuations of several physical quantities leads to equations with \singular? (white noise type) dependence on some of the variables. In this context, random homogenization and stochastic pde become the natural mathematical objects. The randomness is associated with singular dependence on the state variables and lack of compactness both giving rise to challenging mathematical problems. Overcoming them requires the development of new methods and techniques. Viscosity solutions of nonlinear ¯rst- and second-order pde have become a classical tool for the study of many applications. It is therefore important to improve the understanding of their qualitative properties. In biology, recent experiments at the molecular scale have led to new sophisticated mathematical models. Novel tools and ideas are needed to study these problems further and to identify all the relevant regimes/scales of the parameters affecting the experimentally observed behavior. The PI proposes to continue his program to develop methods to study nonlinear deterministic and stochastic pde arising in continuum and statistical physics, biology, engineering, etc.. The emphasis of the proposal is on (i) the development of theories for weak (stochastic viscosity) solutions of fully nonlinear, (degenerate) parabolic stochastic pde, and the homogenization of nonlinear, parabolic/elliptic and hyperbolic pde in spatiotemporal random media, (ii) the study of problems related to viscosity solutions (rates of convergence, averaging, large deviations in infinite dimensions, etc.), and (iii) the analysis of models for motor and concentration effects in mathematical biology. First- and second-order, stochastic pde and stochastic homogenization arise in models for a wide variety of phenomena and applications including turbulence, phase transitions and front propagation in random media with/out random velocities, nucleations in physics, macroscopic limits of particle systems, stochastic control theory, stochastic control with partial observations, financial mathematics, etc.. The theory of stochastic viscosity solutions is important. It allows for the study of a completely new class of fully nonlinear stochastic pde. As the theory develops further, it is expected that it will play a crucial role in applied areas by providing the necessary tools to analyze previously intractable models. There has been resurgence of interest in homogenization in random media. The novel tools proposed to be developed are expected to become the standard methodology in the field. Providing a unified (analytic) treatment, based on viscosity solutions, to a class of large deviation problems in infinite dimensions will lead to a better understanding of an important area with applications to particle systems, random matrices, phase transitions, etc.. In mathematical biology, the proposed work is expected to enhance the understanding of concrete phenomena like bio-motor behavior and concentration effects.
多尺度现象的建模需要使用随机介质(周期性对许多应用来说是一个相当有限的结构),并且需要研究平均(介观和宏观)行为。对于复杂的现象,也很常见的是只有\statistical?(random)and not \exact?(确定性)信息。此外,将几个物理量的波动导致方程\奇异?(白色噪声类型)依赖于某些变量。在这种背景下,随机均匀化和随机偏微分方程成为自然的数学对象。随机性与对状态变量的奇异依赖性和缺乏紧凑性相关联,这两者都引起了具有挑战性的数学问题。克服这些问题需要发展新的方法和技术。非线性一阶和二阶偏微分方程的粘性解已成为许多应用研究的经典工具。因此,重要的是要提高对它们的质量特性的理解。在生物学中,最近在分子尺度上的实验已经导致了新的复杂的数学模型。需要新的工具和想法来进一步研究这些问题,并确定影响实验观察到的行为的参数的所有相关制度/尺度。PI建议继续他的计划,以开发方法来研究连续和统计物理,生物学,工程等中出现的非线性确定性和随机PDE。该提案的重点是(i)发展完全非线性、(退化)抛物随机偏微分方程的弱(随机粘性)解的理论,以及时空随机介质中非线性、抛物/椭圆和双曲偏微分方程的均匀化,(ii)研究与粘性解有关的问题(收敛率、平均、无限维大偏差等),及(iii)分析数学生物学中的运动和集中效应的模型。 一阶和二阶,随机偏微分方程和随机均匀化出现在各种各样的现象和应用的模型中,包括湍流,相变和随机介质中的前沿传播,物理学中的成核,粒子系统的宏观极限,随机控制理论,部分观测的随机控制,金融数学等。随机粘性解的理论是一个重要的问题。它允许研究一个全新的类完全非线性随机偏微分方程。随着理论的进一步发展,预计它将在应用领域发挥关键作用,提供必要的工具来分析以前棘手的模型。在随机介质中的均匀化问题又重新引起人们的兴趣。拟议开发的新工具有望成为该领域的标准方法。提供一个统一的(分析)治疗,粘度解决方案的基础上,一类大偏差问题,在无限维将导致更好地理解一个重要的领域与应用粒子系统,随机矩阵,相变等。在数学生物学中,这项工作有望增强对生物运动行为和浓度效应等具体现象的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panagiotis Souganidis其他文献
In Memory of Andrew J. Majda Bjorn Engquist, Panagiotis Souganidis, Samuel N. Stechmann, and Vlad Vicol
纪念 Andrew J. Majda Bjorn Engquist、Panagiotis Souganidis、Samuel N. Stechmann 和 Vlad Vicol
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Bjorn Engquist;Panagiotis Souganidis;S. Stechmann;V. Vicol - 通讯作者:
V. Vicol
Panagiotis Souganidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Panagiotis Souganidis', 18)}}的其他基金
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
2153822 - 财政年份:2022
- 资助金额:
$ 50.8万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
1900599 - 财政年份:2019
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
1600129 - 财政年份:2016
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
1266383 - 财政年份:2013
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
RTG: Analysis and Differential Equations
RTG:分析和微分方程
- 批准号:
1246999 - 财政年份:2013
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
EMSW21-RTG: Analysis and Differential Equations
EMSW21-RTG:分析和微分方程
- 批准号:
1044944 - 财政年份:2011
- 资助金额:
$ 50.8万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
0902164 - 财政年份:2008
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
0555826 - 财政年份:2006
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
Nonlinear partial differential equations and applications
非线性偏微分方程及其应用
- 批准号:
0244787 - 财政年份:2003
- 资助金额:
$ 50.8万 - 项目类别:
Standard Grant
Nonlinear partial differential equations and applications
非线性偏微分方程及其应用
- 批准号:
0070569 - 财政年份:2000
- 资助金额:
$ 50.8万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
- 批准号:
2307097 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2318032 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2206675 - 财政年份:2022
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 50.8万 - 项目类别:
Standard Grant














{{item.name}}会员




