Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
基本信息
- 批准号:1900599
- 负责人:
- 金额:$ 29.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many applications in Physical and Social Sciences and Engineering, like porous media, composite material, turbulence and combustion, traffic models, spread of crime, climate modeling and prediction, agent models and others, involve heterogeneous media described by partial differential equations, which, typically, depend on many parameters and vary randomly on a small scale. In addition, often the available information, as, for example, in weather prediction, is not exact (deterministic) but statistical (random) with large fluctuations. On macroscopic scales that are much larger than the ones of the heterogeneities, the models often show an effective deterministic behavior, which is much simpler than the original one. The process of the averaging is known as homogenization. Mathematically, this means that the original random and inhomogeneous problem is replaced by a deterministic and homogeneous one. When this averaging is not possible, which is typically the case when the fluctuations are too strong (wild), it is necessary to deal with stochastic media (stochastic partial differential equations), which have rather singular behavior in space and time. The mathematical study of both the stochastic averaging and the stochastic partial differential equations requires original ideas and the development of new methodologies, since both topics fall outside the traditional theories of averaging and partial differential equations. Another burgeoning area of research is the theory of mean field games. Applications that have been so far looked at range from complex socio-economical topics, regulatory financial issues, crowd movement, meaningful big data and advertising to engineering contexts involving "decentralized intelligence'" and machine learning. Mean field games are the ideal mathematical structures to study the quintessential problems in the social-economical sciences, which differ from physical settings because of the forward looking behavior on the part of individual agents. Concrete examples of applications in this direction include the modeling of the macroeconomy and conflicts in the modern era. In both cases, a large number of agents interact strategically in a stochastically evolving environment, all responding to partly common and partly idiosyncratic incentives, and all trying to simultaneously forecast the decision of others. Training of graduate students is an integral part of this research project.The project is about developing general methodologies to study random homogenization, nonlinear stochastic partial differential equations and applications to front propagation, phase transitions, and mean field games. Random environments are much more general than periodic ones. The latter are basically fixed translations of a certain equation while the former can be thought as all the possible equations. This leads to considerable issues of lack of compactness. It is therefore necessary to develop novel tools that combine both the differential and random structures of the media. In this setting, the equation is the random variable and the special dependence signifies the location in space where the equation is observed. The PI and his collaborators were the first to consider stochastic homogenization in stationary ergodic environments. A large part of the project is about the further development of the theory. Stochastic partial differential equations have coefficients with very singular (Brownian) behavior. In the linear context, this can be typically handled by known methods like the classical martingale approach. The latter is based on the linear character of the higher order part of the equation and thus cannot be used for nonlinear problems, where it is necessary to find appropriate notions of solutions. In the context of first- and second-order nonlinear equations, these are the stochastic viscosity and pathwise entropy solutions, introduced by the PI and his collaborators. A part of the project is about the study of the qualitative behavior/properties of these solutions. In the context of mean field games, the PI will concentrate on the role of inhomogeneities at the several level of the game up to the master equation and models with common noise. This will require the development of novel techniques to understand the behavior of the problem past singularities and the role of the averaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物理和社会科学以及工程学中的许多应用,如多孔介质、复合材料、湍流和燃烧、交通模型、犯罪传播、气候建模和预测、代理模型等,都涉及由偏微分方程描述的非均匀介质,这些偏微分方程通常依赖于许多参数,并且在小尺度上随机变化。此外,可用的信息,例如天气预报,往往不是精确的(确定性的),而是统计的(随机的),波动很大。在比非均匀性大得多的宏观尺度上,模型通常表现出有效的确定性行为,这比原始模型简单得多。求平均值的过程被称为均匀化。从数学上讲,这意味着原来的随机和非齐次问题被确定性和齐次问题所取代。当这种平均是不可能的,这是典型的情况下,当波动太强(野生),它是必要的,以处理随机介质(随机偏微分方程),其中有相当奇异的行为在空间和时间。 随机平均和随机偏微分方程的数学研究都需要原创性的想法和新方法的发展,因为这两个主题都超出了平均和偏微分方程的传统理论。 另一个新兴的研究领域是平均场博弈理论。到目前为止,研究的应用范围从复杂的社会经济主题、监管金融问题、人群流动、有意义的大数据和广告到涉及“分散智能”和机器学习的工程背景。平均场博弈是研究社会经济科学中典型问题的理想数学结构,它不同于物理环境,因为个体代理人的前瞻性行为。在这个方向的应用的具体例子包括在现代宏观经济和冲突的建模。在这两种情况下,大量的代理商在随机演化的环境中进行战略性互动,所有代理商都对部分共同和部分特殊的激励做出反应,并且所有代理商都试图同时预测其他代理商的决策。培养研究生是本研究项目的一个组成部分。本项目是关于发展研究随机均匀化、非线性随机偏微分方程及其在前沿传播、相变和平均场博弈中的应用的一般方法。随机环境比周期环境更普遍。后者基本上是某个方程的固定平移,而前者可以被认为是所有可能的方程。这导致了相当多的缺乏紧凑性的问题。因此,有必要开发新的工具,联合收割机结合介质的差分和随机结构。在这种情况下,方程是随机变量,特殊依赖性表示观察方程的空间位置。PI和他的合作者是第一个考虑平稳遍历环境中的随机均匀化。该项目的很大一部分是关于理论的进一步发展。 随机偏微分方程的系数具有非常奇异的(布朗)行为。在线性背景下,这通常可以通过经典鞅方法等已知方法来处理。后者是基于方程的高阶部分的线性特征,因此不能用于非线性问题,其中有必要找到适当的解决方案的概念。在一阶和二阶非线性方程的背景下,这些是随机粘性和路径熵解,由PI和他的合作者介绍。 该项目的一部分是关于这些解决方案的定性行为/属性的研究。在平均场博弈的背景下,PI将集中在几个层次的游戏的主方程和模型与共同的噪音的不均匀性的作用。这将需要开发新的技术来理解问题的行为过去的奇点和平均的作用。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regularity of the value function and quantitative propagation of chaos for mean field control problems
- DOI:10.1007/s00030-022-00823-x
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:P. Cardaliaguet;P. Souganidis
- 通讯作者:P. Cardaliaguet;P. Souganidis
Comparison principles for second-order elliptic/parabolic equations with discontinuities in the gradient compatible with Finsler norms
梯度不连续且与芬斯勒范数兼容的二阶椭圆/抛物线方程的比较原理
- DOI:10.1016/j.jfa.2023.109983
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Morfe, Peter S.;Souganidis, Panagiotis E.
- 通讯作者:Souganidis, Panagiotis E.
Brownian fluctuations of flame fronts with small random advection
带有小随机平流的火焰锋布朗波动
- DOI:10.1142/s0218202520500256
- 发表时间:2020
- 期刊:
- 影响因子:3.5
- 作者:Henderson, Christopher;Souganidis, Panagiotis E.
- 通讯作者:Souganidis, Panagiotis E.
Monotone Solutions of the Master Equation for Mean Field Games with Idiosyncratic Noise
异质噪声平均场博弈主方程的单调解
- DOI:10.1137/21m1450008
- 发表时间:2022
- 期刊:
- 影响因子:2
- 作者:Cardaliaguet, Pierre;Souganidis, Panagiotis
- 通讯作者:Souganidis, Panagiotis
Interpolation results for pathwise Hamilton-Jacobi equations
路径 Hamilton-Jacobi 方程的插值结果
- DOI:10.1512/iumj.2022.71.9174
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Lions, Pierre-Louis;Seeger, Benjamin;Souganidis, Panagiotis
- 通讯作者:Souganidis, Panagiotis
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panagiotis Souganidis其他文献
In Memory of Andrew J. Majda Bjorn Engquist, Panagiotis Souganidis, Samuel N. Stechmann, and Vlad Vicol
纪念 Andrew J. Majda Bjorn Engquist、Panagiotis Souganidis、Samuel N. Stechmann 和 Vlad Vicol
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Bjorn Engquist;Panagiotis Souganidis;S. Stechmann;V. Vicol - 通讯作者:
V. Vicol
Panagiotis Souganidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Panagiotis Souganidis', 18)}}的其他基金
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
2153822 - 财政年份:2022
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
1600129 - 财政年份:2016
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
1266383 - 财政年份:2013
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
RTG: Analysis and Differential Equations
RTG:分析和微分方程
- 批准号:
1246999 - 财政年份:2013
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
EMSW21-RTG: Analysis and Differential Equations
EMSW21-RTG:分析和微分方程
- 批准号:
1044944 - 财政年份:2011
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
0901802 - 财政年份:2009
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
0902164 - 财政年份:2008
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
0555826 - 财政年份:2006
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
Nonlinear partial differential equations and applications
非线性偏微分方程及其应用
- 批准号:
0244787 - 财政年份:2003
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
Nonlinear partial differential equations and applications
非线性偏微分方程及其应用
- 批准号:
0070569 - 财政年份:2000
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 29.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
- 批准号:
2307097 - 财政年份:2023
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2318032 - 财政年份:2023
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 29.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear partial differential equations in heterogeneous frameworks
异构框架中的非线性偏微分方程
- 批准号:
RGPIN-2017-04313 - 财政年份:2022
- 资助金额:
$ 29.79万 - 项目类别:
Discovery Grants Program - Individual
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2206675 - 财政年份:2022
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant