Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
基本信息
- 批准号:1600129
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The modeling of many phenomena in the physical and social sciences and engineering, such as porous media, composite materials, turbulence and combustion, traffic models, spread of crime, agent models and others, involve heterogeneous media described by partial differential equations. These typically depend upon many parameters and vary randomly on a small scale. In addition, often the available information (e.g., data used in weather prediction) is not exact (deterministic) but statistical (random), with large fluctuations. On macroscopic scales that are much larger than the ones of the heterogeneities, the models often exhibit an effective deterministic behavior, which is much simpler than the original one. The process of averaging such data is known as homogenization. Mathematically, this means that the original random problem is replaced by a deterministic one. When this averaging is not possible, which is typically the case when the fluctuations are too strong (wild), it is necessary to deal with so-called stochastic media (stochastic partial differential equations), which have rather singular behavior in space and time. The mathematical study of both the stochastic averaging and the stochastic partial differential equations requires original ideas and the development of new methodologies, since both topics fall outside the traditional theories of averaging and partial differential equations. Another burgeoning area of research in which similar issues surface is mathematical biology, where experiments at the molecular scale, as well as theoretical advances, have led to new, sophisticated mathematical models. Novel tools and ideas are needed to study these problems further and to validate all the relevant regimes/scales of the parameters affecting the experimentally observed and theoretically conjectured behaviors. This project is directed at the development of general methodologies to study random homogenization, nonlinear stochastic partial differential equations, and applications to front propagation, phase transitions, and mathematical biology. Random environments are much more general than periodic ones. The latter basically involve fixed translations of a certain equation, whereas the former can be thought of as involving all possible (relevant) equations. This leads to considerable issues concerning the lack of compactness. It is therefore necessary to develop novel arguments that combine both the differential and random structures of the media under scrutiny. In this setting, the equation is the random variable and the special dependence signifies the location in space where the equation is observed. The principal investigator and his collaborators were the first to consider stochastic homogenization in stationary ergodic environments. A large part of the project is dedicated to further development of the theory. Stochastic partial differential equations have coefficients with very singular (Brownian) behavior. In the linear context, this can usually be handled by known methods, such as the classical martingale approach. This method is based on the linear character of the higher order part of the equation and thus cannot be used for nonlinear problems, where it is necessary to find appropriate alternative notions of solutions. These, in the context of first- and second-order nonlinear equations, are the stochastic viscosity and pathwise entropy solutions that have been introduced by the principal investigator and his collaborators. A part of the project is the study of the qualitative behavior/properties of these solutions. In the context of mathematical biology, the principal investigator plans to work on models of adaptation/selection as well as on models of the biology of development. The former concerns questions related to the adaptation of species to global change, the resistance of insects to pesticides, etc. The latter aims at developing models to study how positional information is provided to proliferating cells, the main questions being the formation and location of sharp and precise boundaries.
物理和社会科学以及工程中的许多现象的建模,例如多孔介质、复合材料、湍流和燃烧、交通模型、犯罪蔓延、代理模型等,都涉及到由偏微分方程描述的非均匀介质。这些通常取决于许多参数,并且在小范围内随机变化。此外,通常可用的信息(例如,天气预测中使用的数据)不是精确的(确定性的),而是统计的(随机的),波动很大。在比非均匀性大得多的宏观尺度上,模型通常表现出有效的确定性行为,这比原始模型简单得多。平均这些数据的过程称为均匀化。从数学上讲,这意味着原始的随机问题被确定性问题所取代。当这种平均是不可能的,这是典型的情况下,当波动太强(野生),它是必要的,以处理所谓的随机介质(随机偏微分方程),其中有相当奇异的行为在空间和时间。 随机平均和随机偏微分方程的数学研究都需要原创性的想法和新方法的发展,因为这两个主题都超出了平均和偏微分方程的传统理论。 另一个出现类似问题的新兴研究领域是数学生物学,在分子尺度上的实验以及理论的进步导致了新的复杂的数学模型。需要新的工具和想法来进一步研究这些问题,并验证影响实验观察到的和理论上证实的行为的参数的所有相关制度/尺度。该项目旨在开发研究随机均匀化,非线性随机偏微分方程的一般方法,以及在前沿传播,相变和数学生物学中的应用。随机环境比周期环境更普遍。后者基本上涉及某个方程的固定平移,而前者可以被认为涉及所有可能的(相关的)方程。这导致了关于缺乏紧凑性的相当多的问题。因此,有必要发展新的论点,联合收割机结合在审查中的媒体的差异和随机结构。在这种情况下,方程是随机变量,特殊依赖性表示观察方程的空间位置。首席研究员和他的合作者是第一个考虑随机均匀化在平稳遍历环境。该项目的很大一部分致力于进一步发展该理论。 随机偏微分方程的系数具有非常奇异的(布朗)行为。在线性背景下,这通常可以通过已知的方法来处理,例如经典的鞅方法。这种方法是基于方程的高阶部分的线性特征,因此不能用于非线性问题,其中有必要找到适当的替代概念的解决方案。这些,在一阶和二阶非线性方程的背景下,是随机粘性和路径熵的解决方案,已被引入的主要研究者和他的合作者。 该项目的一部分是研究这些解决方案的定性行为/属性。在数学生物学的背景下,首席研究员计划在适应/选择模型以及发展生物学模型上工作。前者关注与物种对全球变化的适应性,昆虫对杀虫剂的抗性等有关的问题,后者旨在开发模型来研究位置信息如何提供给增殖细胞,主要问题是尖锐和精确边界的形成和位置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panagiotis Souganidis其他文献
In Memory of Andrew J. Majda Bjorn Engquist, Panagiotis Souganidis, Samuel N. Stechmann, and Vlad Vicol
纪念 Andrew J. Majda Bjorn Engquist、Panagiotis Souganidis、Samuel N. Stechmann 和 Vlad Vicol
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Bjorn Engquist;Panagiotis Souganidis;S. Stechmann;V. Vicol - 通讯作者:
V. Vicol
Panagiotis Souganidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Panagiotis Souganidis', 18)}}的其他基金
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
2153822 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
1900599 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
1266383 - 财政年份:2013
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
RTG: Analysis and Differential Equations
RTG:分析和微分方程
- 批准号:
1246999 - 财政年份:2013
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
EMSW21-RTG: Analysis and Differential Equations
EMSW21-RTG:分析和微分方程
- 批准号:
1044944 - 财政年份:2011
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
0901802 - 财政年份:2009
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
0902164 - 财政年份:2008
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations and Applications
非线性偏微分方程及其应用
- 批准号:
0555826 - 财政年份:2006
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Nonlinear partial differential equations and applications
非线性偏微分方程及其应用
- 批准号:
0244787 - 财政年份:2003
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Nonlinear partial differential equations and applications
非线性偏微分方程及其应用
- 批准号:
0070569 - 财政年份:2000
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
- 批准号:
2307097 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2318032 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2206675 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Standard Grant