Geometric Spectral Theory and Resonances

几何谱理论和共振

基本信息

  • 批准号:
    0901937
  • 负责人:
  • 金额:
    $ 12.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Abstract: Geometric Spectral Theory and Resonances (DMS-0901937) The spectral theory of non-compact manifolds is dominated by the study of resonances, which are analogous to eigenvalues except that the corresponding states are subject to decay by dispersion to infinity. The study of resonances in a geometric context is driven by a few basic questions: How many resonances are there? How are they distributed? What does their distribution tell us about the underlying geometry? The PI will study the spectral geometry of complete, infinite-volume Riemannian manifolds modeled on hyperbolic spaces. These spaces are natural models of chaotic quantum scattering. The specific research goals of this project include: (1) Studying the resonance counting function and separating contributions from conformal poles from the true resonances, (2) developing spectral tools such as determinants and trace formulas in cases where intrinsic regularizations of these objects are not available, (3) inverse scattering problems - deducing geometric structure from the resonance set, scattering phase, etc., (4) perturbation problems - understanding the behavior of resonances under perturbations of a hyperbolic metric. The research in this proposal is motivated by one of the core issues in modern physics, which is to understand the relationship between the structure of a physical system, e.g. its underlying geometry, and its response to oscillatory stimulus such as light or sound waves. Perhaps the most fundamental examples of this relationship are the human senses of vision and hearing. Eyes and ears are receptors for oscillatory signals, and the mind perceives images and sounds only because of the brain's remarkable ability to decode them. Other cases of the same basic relationship abound, from modern physics experiments involving particle beam collision to medical procedures such as the CAT scan to astronomical phenomena such as red shift. In all of these situations the observational data consist of oscillatory signals, and mathematical analysis is required to extract information about the underlying structure. "Spectral theory" is the title given to the corresponding field of mathematics. Expressing these problems in an abstract mathematical setting emphasizes the universality of the fundamental relationship and fosters the cross-fertilization of ideas from different areas. Advances in abstract spectral theory have led and will continue to lead to applications across a broad range of scientific disciplines. The PI has written one book and has plans to write others, which will help make the results of this research available to a broad research audience, including both physicists and mathematicians. The PI currently has two doctoral students.
摘要:几何谱理论和共振(DMS-0901937)非紧流形的谱理论主要是研究共振,共振类似于本征值,除了相应的状态会因色散而衰减到无穷大。 在几何背景下研究共振是由几个基本问题驱动的:有多少共振?它们是如何分布的?它们的分布告诉了我们什么关于潜在的几何形状? PI将研究以双曲空间为模型的完整无限体积黎曼流形的谱几何。 这些空间是混沌量子散射的自然模型。 该项目的具体研究目标包括:(1)研究共振计数函数,并将共形极点的贡献与真实共振分离,(2)在这些物体的内在正则化不可用的情况下开发谱工具,如行列式和迹公式,(3)逆散射问题-从共振集,散射相位等推导几何结构,(4)微扰问题-了解双曲度规微扰下共振的行为。这项研究的动机是现代物理学的核心问题之一,即理解物理系统的结构(例如其基本几何结构)与其对振荡刺激(例如光波或声波)的响应之间的关系。 也许这种关系最基本的例子是人类的视觉和听觉。 眼睛和耳朵是振动信号的接收器,大脑之所以能感知图像和声音,是因为大脑具有非凡的解码能力。 同样基本关系的其他例子比比皆是,从涉及粒子束碰撞的现代物理实验到CAT扫描等医疗程序,再到红移等天文现象。 在所有这些情况下,观测数据由振荡信号组成,需要进行数学分析以提取有关底层结构的信息。 “谱理论”是数学中相应领域的名称。 在抽象的数学环境中表达这些问题强调了基本关系的普遍性,并促进了不同领域思想的交叉融合。 抽象光谱理论的进步已经并将继续导致广泛的科学学科的应用。 PI已经写了一本书,并计划写其他书,这将有助于使这项研究的结果提供给广泛的研究受众,包括物理学家和数学家。 PI目前有两名博士生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Borthwick其他文献

Mathematical Problems in Quantum Physics
量子物理中的数学问题
  • DOI:
    10.1090/conm/717
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Bonetto;David Borthwick;E. Harrell;M. Loss
  • 通讯作者:
    M. Loss
A Local Quantum Version of the Kolmogorov Theorem
The Spectral Density Function for the Laplacian on High Tensor Powers of a Line Bundle
  • DOI:
    10.1023/a:1014944725113
  • 发表时间:
    2002-05-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    David Borthwick;Alejandro Uribe
  • 通讯作者:
    Alejandro Uribe
Surface Thermodynamics: Small Molecule Adsorption Calorimetry on Metal Single Crystals
表面热力学:金属单晶上的小分子吸附量热法
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Fiorin;David Borthwick;D. King
  • 通讯作者:
    D. King
Supersymmetry and Fredholm modules over quantized spaces
  • DOI:
    10.1007/bf02112322
  • 发表时间:
    1994-12-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    David Borthwick;Slawomir Klimek;Andrzej Lesniewski;Maurizio Rinaldi
  • 通讯作者:
    Maurizio Rinaldi

David Borthwick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Borthwick', 18)}}的其他基金

Spectral Geometry of Infinite Volume Manifolds
无限体积流形的谱几何
  • 批准号:
    0204985
  • 财政年份:
    2002
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Deformation Quantization of SymmetricSpaces and Their Quotients
数学科学:对称空间及其商的变形量化
  • 批准号:
    9796195
  • 财政年份:
    1997
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9627406
  • 财政年份:
    1996
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Fellowship Award
Mathematical Sciences: Deformation Quantization of SymmetricSpaces and Their Quotients
数学科学:对称空间及其商的变形量化
  • 批准号:
    9796137
  • 财政年份:
    1996
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Deformation Quantization of SymmetricSpaces and Their Quotients
数学科学:对称空间及其商的变形量化
  • 批准号:
    9401807
  • 财政年份:
    1994
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Standard Grant

相似国自然基金

一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
  • 批准号:
    LTGY23H220001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
关于spectral集和spectral拓扑若干问题研究
  • 批准号:
    11661057
  • 批准年份:
    2016
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
  • 批准号:
    11473055
  • 批准年份:
    2014
  • 资助金额:
    95.0 万元
  • 项目类别:
    面上项目

相似海外基金

Geometric Analysis and Spectral Theory
几何分析和谱理论
  • 批准号:
    RGPIN-2019-03900
  • 财政年份:
    2022
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Analysis and Spectral Theory
几何分析和谱理论
  • 批准号:
    RGPIN-2019-03900
  • 财政年份:
    2021
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Spectral Theory and Geometric Analysis in Several Complex Variables
RUI:多个复杂变量的谱理论和几何分析
  • 批准号:
    2055538
  • 财政年份:
    2021
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Standard Grant
Geometric Analysis and Spectral Theory
几何分析和谱理论
  • 批准号:
    RGPIN-2019-03900
  • 财政年份:
    2020
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Analysis and Spectral Theory
几何分析和谱理论
  • 批准号:
    RGPIN-2019-03900
  • 财政年份:
    2019
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Discovery Grants Program - Individual
Thematic Program on Geometric Analysis and Spectral Theory
几何分析与谱理论专题课程
  • 批准号:
    1647230
  • 财政年份:
    2016
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Standard Grant
Topics in geometric spectral theory
几何谱理论主题
  • 批准号:
    261570-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in geometric spectral theory
几何谱理论主题
  • 批准号:
    261570-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Spectral Theory and Geometric Analysis in Several Complex Variables
RUI:多个复杂变量的谱理论和几何分析
  • 批准号:
    1500952
  • 财政年份:
    2015
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Continuing Grant
Topics in geometric spectral theory
几何谱理论主题
  • 批准号:
    261570-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 12.42万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了