Collaborative Research: Empirical and Hierarchical Bayesian Methods with Applications to Small Area Estimation
协作研究:经验和分层贝叶斯方法及其在小区域估计中的应用
基本信息
- 批准号:0904055
- 负责人:
- 金额:$ 5.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-10-01 至 2009-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will introduce some new empirical and hierarchical Bayesian (EB and HB) methodology which can be used in a wide range of problems in demography, sociology, business, insurance, economics, and surveys. In particular, the methods are expected to be readily applicable to certain small area estimation problems involving both discrete and continuous data. The two major motivating examples for this research are estimation of the proportion of uninsured for minority subpopulations and neighborhood level estimation of the proportion of African-American females suffering from clinical depression. The first topic is of immense relevance to many Federal Agencies such as the Center for Disease Control/National Center for Health Statistics and the United States Bureau of the Census. The second is of direct relevance to researchers engaged in Family and Community Health Study. The project is expected to develop a general class of EB confidence intervals not only for continuous data, but also for discrete data, such as binary and count data. The research will also address robust HB and EB estimation. The general methodology will have direct application to the specific examples mentioned earlier and beyond.The broader impact of the proposed research is enormous. The development of simple and easy to use EB confidence intervals will be an advancement not only for the small area literature, but also for a wide range of problems in demography, sociology, business, economics and insurance where EB methods are routinely used. The simplicity and data-adaptability of these intervals will make them readily usable not only for binary and count data, but also for skewed continuous data fitted by the exponential and gamma distributions. Also, the construction of robust HB and EB estimators will provide a strong theoretically viable method for simultaneous estimation problems, once again routinely faced in diverse research areas. In addition, the proposed research will contribute towards research-based training of graduate students, involve participation of under-represented groups and foster interagency and interdisciplinary collaboration. The new research results also will be incorporated in graduate courses on survey sampling. This award was supported as part of the fiscal year 2006 Mathematical Sciences priority area special competition on Mathematical Social and Behavioral Sciences (MSBS).
该项目将介绍一些新的经验和层次贝叶斯(EB和HB)方法,可用于人口统计学,社会学,商业,保险,经济学和调查等广泛的问题。 特别是,该方法预计将很容易适用于某些小面积估计问题,涉及离散和连续数据。 本研究的两个主要动机的例子是估计的比例未投保的少数民族亚群和社区水平估计的比例的非裔美国女性患有临床抑郁症。 第一个主题与许多联邦机构如疾病控制中心/国家卫生统计中心和美国人口普查局密切相关。 第二个问题与从事家庭和社区健康研究的研究人员直接相关。 该项目预计将开发一个通用类的EB置信区间,不仅为连续数据,而且为离散数据,如二进制和计数数据。 该研究还将解决稳健的HB和EB估计。 一般方法将直接应用于前面提到的具体例子,拟议的研究将产生巨大的广泛影响。 简单易用的EB置信区间的发展将是一个进步,不仅为小面积的文献,但也为广泛的问题,在人口,社会学,商业,经济学和保险,EB方法是常规使用。 这些区间的简单性和数据适应性将使它们不仅易于用于二进制和计数数据,而且还可用于由指数和伽马分布拟合的偏斜连续数据。 此外,建设强大的HB和EB估计将提供一个强大的理论上可行的方法,同时估计问题,再次经常面临不同的研究领域。 此外,拟议的研究将有助于对研究生进行以研究为基础的培训,让代表性不足的群体参与,并促进机构间和学科间的合作。 新的研究成果也将纳入关于调查抽样的研究生课程。 该奖项是作为2006财政年度数学科学优先领域数学社会和行为科学(MSBS)特别竞赛的一部分获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tapabrata Maiti其他文献
Estimating regression coefficients from survey data by asymptotic design-cum-model based approach
- DOI:
10.1007/bf02613902 - 发表时间:
1996-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Arijit Chaudhuri;Tapabrata Maiti - 通讯作者:
Tapabrata Maiti
Asymptotic design-cum-model based estimation of variances of estimated linear regression coefficients in survey sampling with unequal probabilities
- DOI:
10.1007/bf02926161 - 发表时间:
1996-03-01 - 期刊:
- 影响因子:1.100
- 作者:
Arijit Chaudhuri;Tapabrata Maiti - 通讯作者:
Tapabrata Maiti
A note on non-negative mean square error estimation of regression estimators in randomized response surveys
- DOI:
10.1007/bf02927103 - 发表时间:
1998-10-01 - 期刊:
- 影响因子:1.100
- 作者:
Arijit Chadhury;Arun K. Adhikary;Tapabrata Maiti - 通讯作者:
Tapabrata Maiti
Tapabrata Maiti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tapabrata Maiti', 18)}}的其他基金
ATD: Next Generation Statistical Learning Theory and Methods for Multimodal Spatio-Temporal Data with Application to Computer Vision
ATD:下一代多模态时空数据统计学习理论和方法及其在计算机视觉中的应用
- 批准号:
1924724 - 财政年份:2019
- 资助金额:
$ 5.55万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Methods Based on Parametric and Semiparametric Hierarchical Models to Solve Problems Related to Socio-Economic-Demographic Deprivation Measures
合作研究:基于参数和半参数分层模型的统计方法来解决与社会经济人口剥夺措施相关的问题
- 批准号:
0961649 - 财政年份:2010
- 资助金额:
$ 5.55万 - 项目类别:
Standard Grant
Collaborative Research: Empirical and Hierarchical Bayesian Methods with Applications to Small Area Estimation
协作研究:经验和分层贝叶斯方法及其在小区域估计中的应用
- 批准号:
0631560 - 财政年份:2006
- 资助金额:
$ 5.55万 - 项目类别:
Standard Grant
Collaborative research: Topics in Small Area Estimation
合作研究:小区域估计主题
- 批准号:
0318184 - 财政年份:2003
- 资助金额:
$ 5.55万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian and Likelihood Based Multilevel Models for Small Area Estimation
协作研究:用于小区域估计的基于贝叶斯和似然的多级模型
- 批准号:
0221857 - 财政年份:2002
- 资助金额:
$ 5.55万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian and Likelihood Based Multilevel Models for Small Area Estimation
协作研究:用于小区域估计的基于贝叶斯和似然的多级模型
- 批准号:
9911466 - 财政年份:2000
- 资助金额:
$ 5.55万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: An Empirical Blueprint for the Gravitational-Wave Background
合作研究:引力波背景的经验蓝图
- 批准号:
2414468 - 财政年份:2024
- 资助金额:
$ 5.55万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Impacts of Automated Vehicles on Traffic Flow Using Empirical Data
合作研究:利用经验数据了解自动驾驶汽车对交通流量的影响
- 批准号:
2401476 - 财政年份:2023
- 资助金额:
$ 5.55万 - 项目类别:
Standard Grant
Collaborative Research: Empirical Constraints on the s- and r-processes from Precision Nebular Abundances
合作研究:精确星云丰度对 s 和 r 过程的经验约束
- 批准号:
2307116 - 财政年份:2023
- 资助金额:
$ 5.55万 - 项目类别:
Standard Grant
Collaborative Research: Empirical Constraints on the s- and r-processes from Precision Nebular Abundances
合作研究:精确星云丰度对 s 和 r 过程的经验约束
- 批准号:
2307117 - 财政年份:2023
- 资助金额:
$ 5.55万 - 项目类别:
Standard Grant
Collaborative Research: Empirical Frequency Band Analysis for Functional Time Series
合作研究:函数时间序列的经验频带分析
- 批准号:
2152950 - 财政年份:2022
- 资助金额:
$ 5.55万 - 项目类别:
Standard Grant
Collaborative Research: Empirical Frequency Band Analysis for Functional Time Series
合作研究:函数时间序列的经验频带分析
- 批准号:
2152966 - 财政年份:2022
- 资助金额:
$ 5.55万 - 项目类别:
Standard Grant
Collaborative Research: MRA: Evaluating hypotheses of long-term woody carbon dynamics with empirical data
合作研究:MRA:用经验数据评估长期木本碳动态的假设
- 批准号:
2213579 - 财政年份:2022
- 资助金额:
$ 5.55万 - 项目类别:
Continuing Grant
Collaborative Research: CCRI: New: reVISit: Scalable Empirical Evaluation of Interactive Visualizations
合作研究:CCRI:新:reVISit:交互式可视化的可扩展实证评估
- 批准号:
2213757 - 财政年份:2022
- 资助金额:
$ 5.55万 - 项目类别:
Standard Grant
Collaborative Research: MRA: Evaluating hypotheses of long-term woody carbon dynamics with empirical data
合作研究:MRA:用经验数据评估长期木本碳动态的假设
- 批准号:
2213580 - 财政年份:2022
- 资助金额:
$ 5.55万 - 项目类别:
Continuing Grant
Collaborative Research: CCRI: New: reVISit: Scalable Empirical Evaluation of Interactive Visualizations
合作研究:CCRI:新:reVISit:交互式可视化的可扩展实证评估
- 批准号:
2213756 - 财政年份:2022
- 资助金额:
$ 5.55万 - 项目类别:
Standard Grant