Collaborative Research: Statistical Methods Based on Parametric and Semiparametric Hierarchical Models to Solve Problems Related to Socio-Economic-Demographic Deprivation Measures

合作研究:基于参数和半参数分层模型的统计方法来解决与社会经济人口剥夺措施相关的问题

基本信息

  • 批准号:
    0961649
  • 负责人:
  • 金额:
    $ 26.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-05-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

The existence of disparities among communities of diverse racial and economic backgrounds has received considerable attention in last two decades or so. Scholars, bureaucrats, legislators, governing bodies, and numerous other constituents share a sustained concern about the persistent trend of disparity across diverse communities. Today, there is an increasing demand for quantitative tools to analyze such disparity information from high-throughput sources. Simple descriptive statistics that relate to socio-economic, socio-demographic, and socio-health deprivation measures often can mask the important features while analyzing such data. Thus, the exploration of disparity can be better understood by developing sophisticated statistical tools that can extract the salient features from complex data sources. This project will explore innovative multilevel modeling techniques to develop measures that are scientifically more efficient and meaningful for these purposes. Specifically, the research will develop new small area estimation models and estimation techniques that encompass mean-variance relationship, distributional robustness, and multiple comparisons using hierarchical and nonparametric Bayesian approaches. Furthermore, some estimating equation approaches will be developed to study the association between socio-demographic and socio-economic variables with cancer incidence, linked via multilevel generalized linear models. The methods potentially are suitable for analyzing high-dimensional and sparse data.The statistical development will enrich small area estimation technique in various dimensions. The Dirichlet process-based robust modeling will advance the research on clustering in the context of analyzing socio-economic data. The multiple comparison procedures will enhance the simultaneous inference literature in the context of hierarchical modeling. The methods also will have implications in other areas of research such as education, epidemiology, and genetics. In addition, the project will contribute towards research-based training of graduate students and foster interdisciplinary collaboration.
在过去20年左右的时间里,不同种族和经济背景的社区之间存在的差距受到了相当大的关注。 学者、官僚、立法者、管理机构和许多其他选民都对不同社区之间持续存在的不平等趋势表示持续关注。 如今,对定量工具的需求越来越大,以分析来自高通量源的这种差异信息。 与社会经济、社会人口和社会健康剥夺措施有关的简单描述性统计数据在分析此类数据时往往会掩盖重要特征。 因此,通过开发复杂的统计工具,可以从复杂的数据源中提取显著特征,从而更好地理解对差异的探索。 本项目将探索创新的多层次建模技术,以开发在科学上更有效和更有意义的措施。 具体而言,该研究将开发新的小面积估计模型和估计技术,包括均值-方差关系,分布鲁棒性和使用分层和非参数贝叶斯方法的多重比较。 此外,一些估计方程的方法将被开发来研究社会人口和社会经济变量与癌症发病率之间的关联,通过多层次广义线性模型。 该方法适用于高维稀疏数据的分析,统计学的发展将丰富多维小区域估计技术。 基于Dirichlet过程的鲁棒建模将促进聚类在社会经济数据分析背景下的研究。 多重比较程序将增强同时推理文学的背景下,分层建模。 这些方法也将对其他研究领域产生影响,如教育、流行病学和遗传学。 此外,该项目将有助于研究生的研究培训,并促进跨学科合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tapabrata Maiti其他文献

Estimating regression coefficients from survey data by asymptotic design-cum-model based approach
  • DOI:
    10.1007/bf02613902
  • 发表时间:
    1996-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Arijit Chaudhuri;Tapabrata Maiti
  • 通讯作者:
    Tapabrata Maiti
Asymptotic design-cum-model based estimation of variances of estimated linear regression coefficients in survey sampling with unequal probabilities
  • DOI:
    10.1007/bf02926161
  • 发表时间:
    1996-03-01
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Arijit Chaudhuri;Tapabrata Maiti
  • 通讯作者:
    Tapabrata Maiti
A note on non-negative mean square error estimation of regression estimators in randomized response surveys
  • DOI:
    10.1007/bf02927103
  • 发表时间:
    1998-10-01
  • 期刊:
  • 影响因子:
    1.100
  • 作者:
    Arijit Chadhury;Arun K. Adhikary;Tapabrata Maiti
  • 通讯作者:
    Tapabrata Maiti

Tapabrata Maiti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tapabrata Maiti', 18)}}的其他基金

ATD: Next Generation Statistical Learning Theory and Methods for Multimodal Spatio-Temporal Data with Application to Computer Vision
ATD:下一代多模态时空数据统计学习理论和方法及其在计算机视觉中的应用
  • 批准号:
    1924724
  • 财政年份:
    2019
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical and Hierarchical Bayesian Methods with Applications to Small Area Estimation
协作研究:经验和分层贝叶斯方法及其在小区域估计中的应用
  • 批准号:
    0904055
  • 财政年份:
    2008
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical and Hierarchical Bayesian Methods with Applications to Small Area Estimation
协作研究:经验和分层贝叶斯方法及其在小区域估计中的应用
  • 批准号:
    0631560
  • 财政年份:
    2006
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative research: Topics in Small Area Estimation
合作研究:小区域估计主题
  • 批准号:
    0318184
  • 财政年份:
    2003
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Bayesian and Likelihood Based Multilevel Models for Small Area Estimation
协作研究:用于小区域估计的基于贝叶斯和似然的多级模型
  • 批准号:
    0221857
  • 财政年份:
    2002
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Bayesian and Likelihood Based Multilevel Models for Small Area Estimation
协作研究:用于小区域估计的基于贝叶斯和似然的多级模型
  • 批准号:
    9911466
  • 财政年份:
    2000
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247795
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247794
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
  • 批准号:
    2242084
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
  • 批准号:
    2327625
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308445
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 26.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了