Collaborative Research: Bayesian and Likelihood Based Multilevel Models for Small Area Estimation
协作研究:用于小区域估计的基于贝叶斯和似然的多级模型
基本信息
- 批准号:0221857
- 负责人:
- 金额:$ 4.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-01-01 至 2003-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project focuses on Bayesian and likelihood based multilevel models for small area estimation. These methods will be compared and contrasted against some of the existing methods, such as the pseudo maximum likelihood, penalized quasilikelihood, etc. Some of the novel features of this research will be the use of stratum varying regression coefficients, new priors for the variance-covariance matrix rather than the standard Wishart prior, development of small area estimation models allowing measurement errors for covariates, use of hierarchical likelihood in the context of small area estimation, and the use of survey weights for small area estimation. One of the major applications of this project will be the estimation of income and poverty for states and counties, and possibly even for lower levels of geography such as census tracts and school districts (when data become available) between decennnial censuses. However, the methods are fairly general, and can be applied to other studies as well. Among others, these methods will be applied to study youth unemployment for small areas based on the Scottish School Leavears Survey, effectiveness of schools and student character in an education survey conducted by the Inner London Education Authority, and a British Social Attitudes Survey.The terms "small area'' or "local area" are commonly used to denote a small geographical area, such as a county, a municipality, or a census division. They may also describe a "small domain;" that is, a small subpopulation such as a specific age-sex-race group of people within a large geographical area. In these days, there is a global need for reliable small area statistics both from the private and public sectors. There are increasing government concerns with issues of distribution, equity, and disparity. For example, there may exist geographical subgroups within a given population that are handicapped in many respects, and need definite upgrading. Before taking remedial action, there is a need to identify such regions, and accordingly, one must have statistical data at the relevant geographical levels. Small area statistics also are needed in the apportionment of government funds, and in regional and city planning. In addition, there are demands from the private sector since the policy-making of many businesses and industries relies on local socio-economic conditions. Thus, small area estimation techniques have global applicability, and are useful for diverse applications.
本研究计画主要针对小面积估测之贝氏与似然多阶模式。 这些方法将与一些现有方法进行比较和对比,例如伪最大似然法、惩罚准似然法等。本研究的一些新特征将是使用分层变化回归系数、方差-协方差矩阵的新先验而不是标准Wishart先验,开发允许协变量测量误差的小区域估计模型,在小区域估计中使用分层似然法,以及在小区域估计中使用调查权重。 该项目的主要应用之一将是估计州和县的收入和贫困,甚至可能是较低水平的地理,如人口普查区和学区(当数据可用时)。 然而,这些方法是相当普遍的,也可以应用于其他研究。 其中,这些方法将用于研究基于苏格兰学校毕业生调查、内伦敦教育局进行的教育调查中的学校和学生性格的有效性以及英国社会态度调查的小区域的青年失业情况。“小区域”或“局部区域”通常用于表示小的地理区域,例如县、市、或人口普查部门。 他们也可以描述一个“小领域”,即一个小的亚人口,如一个大的地理区域内的特定年龄-性别-种族群体。 目前,全球都需要私营和公共部门提供可靠的小区域统计数据。 政府越来越关注分配、公平和差距问题。 例如,在某一特定人口中,可能存在在许多方面有残疾的地理分组,需要明确的改善。 在采取补救行动之前,需要确定这些区域,因此,必须有相关地理层面的统计数据。 在政府资金分配、区域和城市规划中也需要小面积统计。 此外,私营部门也有需求,因为许多企业和工业的决策取决于当地的社会经济条件。 因此,小区域估计技术具有全球适用性,并且对于不同的应用是有用的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tapabrata Maiti其他文献
Estimating regression coefficients from survey data by asymptotic design-cum-model based approach
- DOI:
10.1007/bf02613902 - 发表时间:
1996-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Arijit Chaudhuri;Tapabrata Maiti - 通讯作者:
Tapabrata Maiti
Asymptotic design-cum-model based estimation of variances of estimated linear regression coefficients in survey sampling with unequal probabilities
- DOI:
10.1007/bf02926161 - 发表时间:
1996-03-01 - 期刊:
- 影响因子:1.100
- 作者:
Arijit Chaudhuri;Tapabrata Maiti - 通讯作者:
Tapabrata Maiti
A note on non-negative mean square error estimation of regression estimators in randomized response surveys
- DOI:
10.1007/bf02927103 - 发表时间:
1998-10-01 - 期刊:
- 影响因子:1.100
- 作者:
Arijit Chadhury;Arun K. Adhikary;Tapabrata Maiti - 通讯作者:
Tapabrata Maiti
Tapabrata Maiti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tapabrata Maiti', 18)}}的其他基金
ATD: Next Generation Statistical Learning Theory and Methods for Multimodal Spatio-Temporal Data with Application to Computer Vision
ATD:下一代多模态时空数据统计学习理论和方法及其在计算机视觉中的应用
- 批准号:
1924724 - 财政年份:2019
- 资助金额:
$ 4.51万 - 项目类别:
Standard Grant
Collaborative Research: Statistical Methods Based on Parametric and Semiparametric Hierarchical Models to Solve Problems Related to Socio-Economic-Demographic Deprivation Measures
合作研究:基于参数和半参数分层模型的统计方法来解决与社会经济人口剥夺措施相关的问题
- 批准号:
0961649 - 财政年份:2010
- 资助金额:
$ 4.51万 - 项目类别:
Standard Grant
Collaborative Research: Empirical and Hierarchical Bayesian Methods with Applications to Small Area Estimation
协作研究:经验和分层贝叶斯方法及其在小区域估计中的应用
- 批准号:
0904055 - 财政年份:2008
- 资助金额:
$ 4.51万 - 项目类别:
Standard Grant
Collaborative Research: Empirical and Hierarchical Bayesian Methods with Applications to Small Area Estimation
协作研究:经验和分层贝叶斯方法及其在小区域估计中的应用
- 批准号:
0631560 - 财政年份:2006
- 资助金额:
$ 4.51万 - 项目类别:
Standard Grant
Collaborative research: Topics in Small Area Estimation
合作研究:小区域估计主题
- 批准号:
0318184 - 财政年份:2003
- 资助金额:
$ 4.51万 - 项目类别:
Standard Grant
Collaborative Research: Bayesian and Likelihood Based Multilevel Models for Small Area Estimation
协作研究:用于小区域估计的基于贝叶斯和似然的多级模型
- 批准号:
9911466 - 财政年份:2000
- 资助金额:
$ 4.51万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 4.51万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 4.51万 - 项目类别:
Continuing Grant
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
- 批准号:
2348163 - 财政年份:2023
- 资助金额:
$ 4.51万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333326 - 财政年份:2023
- 资助金额:
$ 4.51万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333324 - 财政年份:2023
- 资助金额:
$ 4.51万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:
2333325 - 财政年份:2023
- 资助金额:
$ 4.51万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210282 - 财政年份:2022
- 资助金额:
$ 4.51万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215169 - 财政年份:2022
- 资助金额:
$ 4.51万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215168 - 财政年份:2022
- 资助金额:
$ 4.51万 - 项目类别:
Standard Grant
Collaborative Research: Advancing Bayesian Thinking in STEM
合作研究:推进 STEM 中的贝叶斯思维
- 批准号:
2215920 - 财政年份:2022
- 资助金额:
$ 4.51万 - 项目类别:
Standard Grant