Splitting homotopy equivalences: Applications, calculations, foundations
分裂同伦等价:应用、计算、基础
基本信息
- 批准号:0904276
- 负责人:
- 金额:$ 10.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The goal of this project is to deepen and enhance our understanding of geometric topology, that is, the homeomorphism classification of closed manifolds (of dimension greater than three) within a given homotopy type. This project focuses on splitting homotopy equivalences along a two-sided codimension-one submanifold. The obstructions to this ideal situation are given by the Waldhausen Nil-groups and the Cappell UNil-groups. Hence, from an algebraic viewpoint, one theme of the project is the calculation and foundation of the splitting obstruction groups in L-theory.On the other hand, from a topological viewpoint, splitting is a special case of the coarser decomposition into big, non-simply connected pieces. The principal investigator proposes the use of these non-simply connected metablocks to study the Four-dimensional Surgery Conjecture. These metablocks allow for the more flexible notion of classifying space BsubF/subΓ for families F of small subgroups of Γ. This approach would hybridize the techniques of three isolated communities that have sprung up in the past 25 years: controlled surgery, surgery on 4-manifolds with small fundamental group, and assembly maps for families.A manifold is a smooth shape, without any sharp edges or singularities. For example, a one-dimensional manifold is a curve, and a two-dimensional manifold is a surface. Three and four-dimensional manifolds occur in physics, such as general relativity. Higher-dimensional manifolds occur in string theory and also as configuration spaces for robot motion planning. The mathematical classification of manifolds is fundamental to understanding both the global structure of our universe and the hidden routes through which a closed physical system is connected to itself.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。这个项目的目标是加深和增强我们对几何拓扑的理解,即给定同伦类型内闭流形(维数大于3)的同胚分类。这个计画的重点是沿着沿着一个双侧余维1子流形分裂同伦等价。Waldhausen Nil-群和Cappell Unil-群给这一理想情形设置了障碍。因此,从代数的角度来看,该项目的一个主题是L-理论中分裂障碍群的计算和基础。另一方面,从拓扑的角度来看,分裂是粗分解为大的非单连通块的特殊情况。主要研究者建议使用这些非单连通元块来研究四维手术猜想。这些元块允许更灵活的概念分类空间BsubF/sub Gamma;为家庭F的小子群的Gamma;。这种方法将混合在过去25年中出现的三个孤立社区的技术:控制手术,具有小基本群的4-流形上的手术,以及家庭的装配映射。例如,一维流形是曲线,二维流形是曲面。三维和四维流形出现在物理学中,如广义相对论。高维流形出现在弦理论中,也作为机器人运动规划的配置空间。流形的数学分类对于理解我们宇宙的整体结构和封闭物理系统与自身相连的隐藏路线都是至关重要的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
C. Bruce Hughes其他文献
C. Bruce Hughes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('C. Bruce Hughes', 18)}}的其他基金
Workshop on Nil Phenomena in Topology
拓扑中零现象研讨会
- 批准号:
0715422 - 财政年份:2007
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Stratifications, Ends, and Controlled Topology
分层、末端和受控拓扑
- 批准号:
0504176 - 财政年份:2005
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Stratified Spaces and Controlled Topology
分层空间和受控拓扑
- 批准号:
9971367 - 财政年份:1999
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Mathematical Sciences: Controlled Topology, Group Actions and Stratified Spaces
数学科学:受控拓扑、群作用和分层空间
- 批准号:
9504759 - 财政年份:1995
- 资助金额:
$ 10.35万 - 项目类别:
Continuing Grant
Mathematical Sciences: Manifolds, Stratified Spaces, and Controlled Topology
数学科学:流形、分层空间和受控拓扑
- 批准号:
9022179 - 财政年份:1991
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Mathematical Sciences: Controlled Topology of Manifolds
数学科学:流形的受控拓扑
- 批准号:
8701314 - 财政年份:1987
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Mathematical Sciences: Approximate Fibrations and the Topology of Manifolds
数学科学:近似纤维化和流形拓扑
- 批准号:
8401570 - 财政年份:1984
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
相似海外基金
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 10.35万 - 项目类别:
Continuing Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
- 批准号:
2405191 - 财政年份:2024
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
- 批准号:
2427220 - 财政年份:2024
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Conference: A Panorama of Homotopy theory
会议:同伦理论全景
- 批准号:
2316253 - 财政年份:2023
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
- 批准号:
2304797 - 财政年份:2023
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
- 批准号:
2305392 - 财政年份:2023
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 10.35万 - 项目类别:
Standard Grant
Computations and applications of Seiberg-Witten Floer stable homotopy type
Seiberg-Witten Floer稳定同伦型的计算与应用
- 批准号:
23K03115 - 财政年份:2023
- 资助金额:
$ 10.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classifying spaces, proper actions and stable homotopy theory
空间分类、适当作用和稳定同伦理论
- 批准号:
EP/X038424/1 - 财政年份:2023
- 资助金额:
$ 10.35万 - 项目类别:
Research Grant