Stratifications and Ends of Spaces
空间的分层和末端
基本信息
- 批准号:0245602
- 负责人:
- 金额:$ 7.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Topology, as a branch of geometry, seeks to classify, characterize and explore those abstract spaces known as manifolds. Manifolds are locally like ordinary euclidean spaces(the line, the plane, etc.); however, they are allowed to have global twisting, curving and holes (e.g., circles, spheres, tori). They arise in many models of physical and biologicalphenomena. Manifolds with singularities, or stratified spaces, are even more ubiquitous as they appear as solution spaces of algebraic and differential equations and as limits, degenerations and compactifications of manifolds. Hughes has made a breakthrough in the understanding of topologically stratified spaces by establishing a theory of theneighborhoods of the singularities. This allows one to use geometric techniques almost as if the singularities were not present. The current project is largely concerned with exploiting this technique to further the understanding of manifolds with singularities. As an example, Hughes will investigate the extent of periodicity near the singular sets.The proposed research concerns the topology and geometry of manifolds, stratified spaces, trees and metric spaces. The investigations are in the areas of stratified spaces, trees, ultrametrics and noncommutative geometry and the fundamental theorem of algebraic K-theory. The main tools are controlled topology, surgery theory and C*-algebras of groupoids. Specific questions concern periodicity in the neighborhood of the singular set of a manifold stratified space, the classification of stratified h-cobordisms and stratified pseudoisotopies, and non-locally flat topological embeddings. In addition, techniques from noncommutative geometry will be applied to study the geometry of infinite trees and other non-compact spaces at infinity.
拓扑学作为几何学的一个分支,其目的是对流形这种抽象空间进行分类、刻画和探索。流形在局部上类似于普通的欧几里得空间(直线、平面等);但是允许它们具有整体扭曲、弯曲和孔(例如,圆、球体、环面)。它们出现在许多物理和生物现象的模型中。具有奇点的流形,或称分层空间,在代数和微分方程的解空间以及流形的极限、退化和紧化中更是无处不在。Hughes建立了奇点邻域理论,在拓扑分层空间的理解上取得了突破。这使得人们可以使用几何技术,几乎就像奇点不存在一样。目前的项目主要是利用这种技术,以进一步了解流形的奇点。 作为一个例子,Hughes将研究奇异集附近的周期性的程度。拟议的研究涉及流形,分层空间,树和度量空间的拓扑和几何。调查的领域是分层空间,树,超度量和非交换几何和基本定理的代数K理论。 主要工具是控制拓扑学、外科理论和广群的C*-代数。具体的问题涉及周期性在附近的奇异集的流形分层空间,分层h-cobordisms和分层pseudositopies的分类,和非局部平坦的拓扑嵌入。此外,从非交换几何的技术将应用于研究几何的无限树和其他非紧空间在无穷远。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
C. Bruce Hughes其他文献
C. Bruce Hughes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('C. Bruce Hughes', 18)}}的其他基金
Splitting homotopy equivalences: Applications, calculations, foundations
分裂同伦等价:应用、计算、基础
- 批准号:
0904276 - 财政年份:2009
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
Stratifications, Ends, and Controlled Topology
分层、末端和受控拓扑
- 批准号:
0504176 - 财政年份:2005
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
Stratified Spaces and Controlled Topology
分层空间和受控拓扑
- 批准号:
9971367 - 财政年份:1999
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Controlled Topology, Group Actions and Stratified Spaces
数学科学:受控拓扑、群作用和分层空间
- 批准号:
9504759 - 财政年份:1995
- 资助金额:
$ 7.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Manifolds, Stratified Spaces, and Controlled Topology
数学科学:流形、分层空间和受控拓扑
- 批准号:
9022179 - 财政年份:1991
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Controlled Topology of Manifolds
数学科学:流形的受控拓扑
- 批准号:
8701314 - 财政年份:1987
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Approximate Fibrations and the Topology of Manifolds
数学科学:近似纤维化和流形拓扑
- 批准号:
8401570 - 财政年份:1984
- 资助金额:
$ 7.6万 - 项目类别:
Standard Grant
相似海外基金
Ireland and the 'ends' of the British Empire, 1886 to the present
爱尔兰和大英帝国的“终结”,1886 年至今
- 批准号:
MR/X036111/1 - 财政年份:2024
- 资助金额:
$ 7.6万 - 项目类别:
Fellowship
When caring ends: Understanding and supporting informal care trajectories
当护理结束时:理解和支持非正式护理轨迹
- 批准号:
LP220100209 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Linkage Projects
CAREER: Non-Reciprocally-Coupled Load-Modulation Platform for Next-Generation High-Power Magnetic-Less Fully-Directional Radio Front Ends
职业:用于下一代高功率无磁全向无线电前端的非互易耦合负载调制平台
- 批准号:
2239207 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Continuing Grant
Using people well, treating people badly: Towards a Kantian Realm of Ends and Means
用善用人,待人恶劣:走向康德式的目的与手段的境界
- 批准号:
AH/X002365/1 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Research Grant
Normative and Network Influences on ENDS use (Electronic nicotine delivery systems- e-cigarettes/vaping)
规范和网络对 ENDS 使用的影响(电子尼古丁输送系统 - 电子烟/电子烟)
- 批准号:
10606405 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Predicting Effects of ENDS Flavor Regulations Among Latinx/e Smokers: Impact of Cultural Assets on Attitudes, Intentions, and Behavior.
预测 ENDS 风味法规对拉丁裔/电子烟民的影响:文化资产对态度、意图和行为的影响。
- 批准号:
10727107 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
The Interplay of ENDS and Tobacco Control Policy: Impact on the Population Harms of Tobacco
电子尼古丁传送系统和烟草控制政策的相互作用:对烟草对人口危害的影响
- 批准号:
10654678 - 财政年份:2022
- 资助金额:
$ 7.6万 - 项目类别:
Early Periodontal Health Impacts of Electronic Nicotine Delivery System (ENDS) Usage
电子尼古丁输送系统 (ENDS) 使用对早期牙周健康的影响
- 批准号:
10691174 - 财政年份:2022
- 资助金额:
$ 7.6万 - 项目类别:
A human translation of research on the neurobehavioral reward and reinforcement of flavored electronic nicotine delivery systems (ENDS)
神经行为奖励和调味电子尼古丁输送系统 (ENDS) 强化研究的人类翻译
- 批准号:
10671683 - 财政年份:2022
- 资助金额:
$ 7.6万 - 项目类别: