Stratifications, Ends, and Controlled Topology

分层、末端和受控拓扑

基本信息

  • 批准号:
    0504176
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

The project concerns the topology and geometry of manifolds, stratified spaces, infinite trees, and ultrametric spaces. The main tools are controlled topology, surgery theory, noncommutative geometry, and C*-algebras of groupoids. The main focus is on the geometry of infinite trees and other non-compact manifold stratified spaces at infinity. Specific problems that will be addressed include the Baum-Connes conjecture for local similarity groupoids arising from the end spaces of trees, periodic structure in the neighborhood of the singular set of a manifold stratified space, the classification of stratified h-cobordisms, and controlled topology over nonpositively curved manifolds. This last problem is related to Novikov-like conjectures.Topology seeks to classify, characterize, and explore those abstract spaces known as manifolds. Manifolds are locally like ordinary euclidean spaces (the line, the plane, three-dimensional space, etc.); however, they are allowed to have global twisting, curving and holes (e.g., circles, spheres, tori). Manifolds arise in many models of physical and biological phenomena. Manifolds with singularities, or stratified spaces, are even more ubiquitous as they appear as solution spaces of algebraic and differential equations, and as limits and compactifications of manifolds. Mathematical trees are the one-dimensional case of stratified spaces and are used to model branching processes. There are many asymmetric infinite trees that nevertheless have many similar infinite subtrees. One of the goals of this project is to study these non-global symmetries of infinite trees using a fairly new branch of mathematics called noncommutative geometry. More generally, the symmetry and periodic structure of stratified spaces at infinity will be investigated.
该项目涉及流形,分层空间,无限树和超度量空间的拓扑和几何。 主要的工具是控制拓扑,外科手术理论,非交换几何,和C*-代数的广群。主要的重点是几何的无限树和其他非紧流形分层空间在无穷远。具体的问题,将解决包括鲍姆-康纳斯猜想的局部相似广群所产生的终端空间的树木,周期性结构的奇异集附近的一个流形分层空间,分层h-cobordisms的分类,并控制拓扑非正弯曲的流形。最后一个问题与诺维科夫式拓扑有关。拓扑学试图对那些被称为流形的抽象空间进行分类、刻画和探索。流形在局部上类似于普通的欧几里得空间(直线、平面、三维空间等);但是允许它们具有整体扭曲、弯曲和孔(例如,圆、球体、环面)。流形出现在物理和生物现象的许多模型中。具有奇点的流形,或称分层空间,在代数和微分方程的解空间,以及流形的极限和紧化中,更是无处不在。数学树是分层空间的一维情况,用于建模分支过程。有许多不对称的无限树,但有许多类似的无限子树。这个项目的目标之一是使用一个相当新的数学分支,称为非交换几何,来研究无限树的这些非全局对称性。更一般地说,分层空间在无穷远处的对称性和周期性结构将被研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

C. Bruce Hughes其他文献

C. Bruce Hughes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('C. Bruce Hughes', 18)}}的其他基金

Splitting homotopy equivalences: Applications, calculations, foundations
分裂同伦等价:应用、计算、基础
  • 批准号:
    0904276
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Workshop on Nil Phenomena in Topology
拓扑中零现象研讨会
  • 批准号:
    0715422
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Stratifications and Ends of Spaces
空间的分层和末端
  • 批准号:
    0245602
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Stratified Spaces and Controlled Topology
分层空间和受控拓扑
  • 批准号:
    9971367
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Controlled Topology, Group Actions and Stratified Spaces
数学科学:受控拓扑、群作用和分层空间
  • 批准号:
    9504759
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Manifolds, Stratified Spaces, and Controlled Topology
数学科学:流形、分层空间和受控拓扑
  • 批准号:
    9022179
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Controlled Topology of Manifolds
数学科学:流形的受控拓扑
  • 批准号:
    8701314
  • 财政年份:
    1987
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Approximate Fibrations and the Topology of Manifolds
数学科学:近似纤维化和流形拓扑
  • 批准号:
    8401570
  • 财政年份:
    1984
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Ireland and the 'ends' of the British Empire, 1886 to the present
爱尔兰和大英帝国的“终结”,1886 年至今
  • 批准号:
    MR/X036111/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
When caring ends: Understanding and supporting informal care trajectories
当护理结束时:理解和支持非正式护理轨迹
  • 批准号:
    LP220100209
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
Repair of DNA ends with adducts
用加合物修复 DNA 末端
  • 批准号:
    10587000
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
CAREER: Non-Reciprocally-Coupled Load-Modulation Platform for Next-Generation High-Power Magnetic-Less Fully-Directional Radio Front Ends
职业:用于下一代高功率无磁全向无线电前端的非互易耦合负载调制平台
  • 批准号:
    2239207
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Using people well, treating people badly: Towards a Kantian Realm of Ends and Means
用善用人,待人恶劣:走向康德式的目的与手段的境界
  • 批准号:
    AH/X002365/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Normative and Network Influences on ENDS use (Electronic nicotine delivery systems- e-cigarettes/vaping)
规范和网络对 ENDS 使用的影响(电子尼古丁输送系统 - 电子烟/电子烟)
  • 批准号:
    10606405
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Predicting Effects of ENDS Flavor Regulations Among Latinx/e Smokers: Impact of Cultural Assets on Attitudes, Intentions, and Behavior.
预测 ENDS 风味法规对拉丁裔/电子烟民的影响:文化资产对态度、意图和行为的影响。
  • 批准号:
    10727107
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The effect of menthol on ENDS users' dependence, respiratory, and toxicants emission outcomes
薄荷醇对 ENDS 用户的依赖性、呼吸系统和毒物排放结果的影响
  • 批准号:
    10444519
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
The Interplay of ENDS and Tobacco Control Policy: Impact on the Population Harms of Tobacco
电子尼古丁传送系统和烟草控制政策的相互作用:对烟草对人口危害的影响
  • 批准号:
    10654678
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
A human translation of research on the neurobehavioral reward and reinforcement of flavored electronic nicotine delivery systems (ENDS)
神经行为奖励和调味电子尼古丁输送系统 (ENDS) 强化研究的人类翻译
  • 批准号:
    10671683
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了