Geometry, topology and group theory of surfaces
曲面的几何、拓扑和群论
基本信息
- 批准号:0905748
- 负责人:
- 金额:$ 28.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0905748Principal Investigator: Christopher J. LeiningerThis project aims to study the geometry of various structures onsurfaces, actions of the mapping class group on these spaces, andtopological/dynamical aspects of surface homeomorphisms. Thisincludes (1) an ongoing project with R.P. Kent on convexcocompactness in the mapping class group, with a focus on freegroups and surface groups; (2) a topological investigations ofalgebraic relations in the mapping class group and the closelyrelated braid groups with D. Margalit; (3) a study, via geodesiclength functions, of certain singular euclidean geometricstructures on surfaces and their degenerations in a joint projectwith M. Duchin and K. Rafi; (4) a continuing project withB. Farb and D. Margalit to provide a topological model for"minimal complexity" surface homeomorphisms.Surfaces---like the surface of a ball or a doughnut---have beenstudied for hundreds of years, and are fundamental and beautifulobjects in mathematics. The study of surfaces is intrinsicallyinteresting, but is also responsible for the creation of entirefields of mathematics, as well as the development of techniquesin many others. As such, the theory of surfaces and theirgeometries lies at the juncture of several fields of mathematicsincluding complex analysis, differential geometry,low-dimensional topology, geometric group theory and dynamics.Many geometric objects can be described using surfaces as thebasic building blocks. To study these objects one naturallyencounters the notion of a "homeomorphism" of a surface: this isa kind of "symmetry" which preserves only the most basicproperties of the surface. The set of all homeomorphisms issomewhat unwieldy, but the most important features can bedistilled into a more manageable structure called the "mappingclass group." This project proposes the study of several relatedproblems about surfaces, their homeomorphisms and mapping classgroups, and the implications of these studies to relatedgeometric objects.
AbstractAward:DMS-0905748首席研究员:Christopher J. Leininger该项目旨在研究表面上各种结构的几何形状,映射类群在这些空间上的作用,以及表面同胚的拓扑/动力学方面。 这包括(1)与R. P.肯特(R. P. Kent)正在进行的关于映射类群中的凸余紧性的研究,重点是自由群和曲面群;(2)与D. Margalit;(3)在与M. Duchin和K. Rafi;(4)与B. Farb和D. Margalit为“最小复杂性”的曲面同胚提供了一个拓扑模型。曲面--就像球或甜甜圈的表面--已经被研究了几百年,是数学中的基础和美丽的分支。 曲面的研究本质上是有趣的,但也是整个数学领域的创造,以及许多其他技术的发展。 因此,曲面及其几何的理论是复分析、微分几何、低维拓扑、几何群论和动力学等几何学领域的交叉点,许多几何对象都可以用曲面作为基本构件来描述。为了研究这些对象,人们自然会遇到曲面的“同胚”概念:这伊萨一种只保留曲面最基本性质的“对称”。 所有同胚的集合有点笨拙,但最重要的特征可以被提炼成一个更易于管理的结构,称为“映射类组”。“本项目提出了几个相关问题的研究曲面,他们的同胚和映射类组,以及这些研究的含义,相关的几何对象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Leininger其他文献
Christopher Leininger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Leininger', 18)}}的其他基金
Conference: 1, 2, 3: Curves, Surfaces, and 3-Manifolds
会议:1,2,3:曲线、曲面和 3-流形
- 批准号:
2246832 - 财政年份:2023
- 资助金额:
$ 28.93万 - 项目类别:
Standard Grant
Problems in geometry, topology, and group theory
几何、拓扑和群论问题
- 批准号:
2305286 - 财政年份:2023
- 资助金额:
$ 28.93万 - 项目类别:
Continuing Grant
Combinatorial and Algebraic Aspects of Geometric Structures
几何结构的组合和代数方面
- 批准号:
1922091 - 财政年份:2019
- 资助金额:
$ 28.93万 - 项目类别:
Standard Grant
2019 Graduate Student Topology and Geometry Conference
2019年研究生拓扑与几何会议
- 批准号:
1856681 - 财政年份:2019
- 资助金额:
$ 28.93万 - 项目类别:
Standard Grant
Geometry, topology and group theory in low dimensions.
低维几何、拓扑和群论。
- 批准号:
1207183 - 财政年份:2012
- 资助金额:
$ 28.93万 - 项目类别:
Standard Grant
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Domain理论与拓扑学研究
- 批准号:60473009
- 批准年份:2004
- 资助金额:7.0 万元
- 项目类别:面上项目
相似海外基金
Problems in geometry, topology, and group theory
几何、拓扑和群论问题
- 批准号:
2305286 - 财政年份:2023
- 资助金额:
$ 28.93万 - 项目类别:
Continuing Grant
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
- 批准号:
2203912 - 财政年份:2022
- 资助金额:
$ 28.93万 - 项目类别:
Standard Grant
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
- 批准号:
2231286 - 财政年份:2022
- 资助金额:
$ 28.93万 - 项目类别:
Standard Grant
Lie group actions in Geometry and Topology
几何和拓扑中的李群作用
- 批准号:
450239298 - 财政年份:2020
- 资助金额:
$ 28.93万 - 项目类别:
Heisenberg Grants
Geometry and computability in low-dimensional topology and group theory.
低维拓扑和群论中的几何和可计算性。
- 批准号:
2283616 - 财政年份:2019
- 资助金额:
$ 28.93万 - 项目类别:
Studentship
Lie group actions in Geometry and Topology
几何和拓扑中的李群作用
- 批准号:
324524312 - 财政年份:2016
- 资助金额:
$ 28.93万 - 项目类别:
Heisenberg Fellowships
Topology, contact geometry, and fundamental group of 3-manifolds from open book decomposition
拓扑、接触几何和开卷分解的 3 流形基本群
- 批准号:
25887030 - 财政年份:2013
- 资助金额:
$ 28.93万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Geometry, topology and group theory in low dimensions.
低维几何、拓扑和群论。
- 批准号:
1207183 - 财政年份:2012
- 资助金额:
$ 28.93万 - 项目类别:
Standard Grant
Comprehensive studies on topology, analysis and geometry of singular spaces and related topics
奇异空间的拓扑、分析和几何及相关主题的综合研究
- 批准号:
24540085 - 财政年份:2012
- 资助金额:
$ 28.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry and algorithms in topology and group theory
拓扑和群论中的几何和算法
- 批准号:
1104703 - 财政年份:2011
- 资助金额:
$ 28.93万 - 项目类别:
Standard Grant














{{item.name}}会员




