Geometry, topology and group theory in low dimensions.

低维几何、拓扑和群论。

基本信息

项目摘要

This project aims to study problems involving surfaces and three-manifolds, primarily from the perspective of group theory and geometry, but also drawing on ideas and techniques from complex analysis and dynamics. This includes (1) an ongoing project with R.P. Kent on convex cocompactness in the mapping class group, various parts of which are also joint work with M. Bestvina, J. Brock, K. Bromberg, and S. Dowdall; (2) ongoing work with D. Margalit on dynamics of pseduo-Anosov homeomorphisms and their relation to three-manifolds, parts of which are also joint work with B. Farb; (3) various projects on length functions and geometric structures on surfaces which involves work with M. Duchin and K. Rafi, as well as work done by the PI's graduate students, A. Bankovic, S.-W. Fu, R. Maungchang, and C. Uyanik.Surfaces - two-dimensional spaces like the surface of a ball or a doughnut - have been studied for hundreds of years, and are fundamental and beautiful objects in mathematics. The study of surfaces is intrinsically interesting, but is also responsible for the creation of entire fields of mathematics, shaping the way people solve problems. Three-dimensional topology - the study of three-dimensional spaces like our physical universe - has been profoundly impacted by developments in the study of surfaces. This may not seem surprising since a surface is a two-dimensional space, and one might expect a three-dimensional space to enjoy some of the same properties. While it is true that direct analogies in the situations have produced some interesting results, it is the use of surfaces as building blocks for understanding three-manifolds (the three-dimensional spaces) which has most significantly shaped the field. One important aspect of this project is the strategy of "reversing the flow of information" by (1) applying new technology developed to study three-manifolds into the theory of surfaces, rather than vice-versa, and (2) exploring the subtle effects the geometry of three-manifolds imposes on the geometry of the surfaces used to construct them.
这个项目的目的是研究涉及曲面和三维流形的问题,主要从群论和几何的角度出发,但也借鉴了复杂分析和动力学的思想和技术。这包括(1)与R.P.Kent正在进行的关于映射类群中的凸余紧性的项目,其各个部分也是与M.Bestvina,J.Brock,K.Bromberg和S.Dowdall的联合工作;(2)与D.Margalit正在进行的关于伪多-Anosov同胚的动力学及其与三-流形的关系的工作,其中的一些部分也是与B.Farb的联合工作;(3)关于曲面上的长度函数和几何结构的各种项目,涉及M.Duchin和K.Rafi的工作,以及PI的研究生A.Bankovic、S.W.Fu、R.Maungchang和C.Uyanik.曲面-类似于球或甜甜圈的表面的二维空间-已经被研究了数百年,是数学中基本的和美丽的对象。对曲面的研究本质上是有趣的,但也负责创造整个数学领域,塑造人们解决问题的方式。三维拓扑学--研究像我们的物理宇宙一样的三维空间--已经受到表面研究的发展的深刻影响。这似乎并不令人惊讶,因为表面是一个二维空间,人们可能会认为三维空间会享受一些相同的性质。虽然在这种情况下的直接类比确实产生了一些有趣的结果,但最显著地塑造了该领域的是将曲面用作理解三维流形(三维空间)的构建块。这个项目的一个重要方面是通过(1)将为研究三维流形而开发的新技术应用于曲面理论,而不是相反,以及(2)探索三维流形几何对用于构造它们的曲面的几何施加的微妙影响的策略,通过(1)将研究三维流形的新技术应用到曲面理论中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Leininger其他文献

Christopher Leininger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Leininger', 18)}}的其他基金

Conference: 1, 2, 3: Curves, Surfaces, and 3-Manifolds
会议:1,2,3:曲线、曲面和 3-流形
  • 批准号:
    2246832
  • 财政年份:
    2023
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Problems in geometry, topology, and group theory
几何、拓扑和群论问题
  • 批准号:
    2305286
  • 财政年份:
    2023
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Continuing Grant
Geometry, groups, and dynamics
几何、群和动力学
  • 批准号:
    2106419
  • 财政年份:
    2020
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Combinatorial and Algebraic Aspects of Geometric Structures
几何结构的组合和代数方面
  • 批准号:
    1922091
  • 财政年份:
    2019
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
2019 Graduate Student Topology and Geometry Conference
2019年研究生拓扑与几何会议
  • 批准号:
    1856681
  • 财政年份:
    2019
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Geometry, groups, and dynamics
几何、群和动力学
  • 批准号:
    1811518
  • 财政年份:
    2018
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Geometry, group theory, and dynamics
几何、群论和动力学
  • 批准号:
    1510034
  • 财政年份:
    2015
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Geometry, topology and group theory of surfaces
曲面的几何、拓扑和群论
  • 批准号:
    0905748
  • 财政年份:
    2009
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Geometry and the mapping class group
几何和映射类组
  • 批准号:
    0603881
  • 财政年份:
    2006
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0202348
  • 财政年份:
    2002
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Fellowship Award

相似国自然基金

Fibered纽结的自同胚、Floer同调与4维亏格
  • 批准号:
    12301086
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Domain理论与拓扑学研究
  • 批准号:
    60473009
  • 批准年份:
    2004
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

Problems in geometry, topology, and group theory
几何、拓扑和群论问题
  • 批准号:
    2305286
  • 财政年份:
    2023
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Continuing Grant
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
  • 批准号:
    2231286
  • 财政年份:
    2022
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
  • 批准号:
    2203912
  • 财政年份:
    2022
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Lie group actions in Geometry and Topology
几何和拓扑中的李群作用
  • 批准号:
    450239298
  • 财政年份:
    2020
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Heisenberg Grants
Geometry and computability in low-dimensional topology and group theory.
低维拓扑和群论中的几何和可计算性。
  • 批准号:
    2283616
  • 财政年份:
    2019
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Studentship
Lie group actions in Geometry and Topology
几何和拓扑中的李群作用
  • 批准号:
    324524312
  • 财政年份:
    2016
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Heisenberg Fellowships
Topology, contact geometry, and fundamental group of 3-manifolds from open book decomposition
拓扑、接触几何和开卷分解的 3 流形基本群
  • 批准号:
    25887030
  • 财政年份:
    2013
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Comprehensive studies on topology, analysis and geometry of singular spaces and related topics
奇异空间的拓扑、分析和几何及相关主题的综合研究
  • 批准号:
    24540085
  • 财政年份:
    2012
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry and algorithms in topology and group theory
拓扑和群论中的几何和算法
  • 批准号:
    1104703
  • 财政年份:
    2011
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
Geometry, topology and group theory of surfaces
曲面的几何、拓扑和群论
  • 批准号:
    0905748
  • 财政年份:
    2009
  • 资助金额:
    $ 24.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了