Geometry, topology and group theory in low dimensions.
低维几何、拓扑和群论。
基本信息
- 批准号:1207183
- 负责人:
- 金额:$ 24.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to study problems involving surfaces and three-manifolds, primarily from the perspective of group theory and geometry, but also drawing on ideas and techniques from complex analysis and dynamics. This includes (1) an ongoing project with R.P. Kent on convex cocompactness in the mapping class group, various parts of which are also joint work with M. Bestvina, J. Brock, K. Bromberg, and S. Dowdall; (2) ongoing work with D. Margalit on dynamics of pseduo-Anosov homeomorphisms and their relation to three-manifolds, parts of which are also joint work with B. Farb; (3) various projects on length functions and geometric structures on surfaces which involves work with M. Duchin and K. Rafi, as well as work done by the PI's graduate students, A. Bankovic, S.-W. Fu, R. Maungchang, and C. Uyanik.Surfaces - two-dimensional spaces like the surface of a ball or a doughnut - have been studied for hundreds of years, and are fundamental and beautiful objects in mathematics. The study of surfaces is intrinsically interesting, but is also responsible for the creation of entire fields of mathematics, shaping the way people solve problems. Three-dimensional topology - the study of three-dimensional spaces like our physical universe - has been profoundly impacted by developments in the study of surfaces. This may not seem surprising since a surface is a two-dimensional space, and one might expect a three-dimensional space to enjoy some of the same properties. While it is true that direct analogies in the situations have produced some interesting results, it is the use of surfaces as building blocks for understanding three-manifolds (the three-dimensional spaces) which has most significantly shaped the field. One important aspect of this project is the strategy of "reversing the flow of information" by (1) applying new technology developed to study three-manifolds into the theory of surfaces, rather than vice-versa, and (2) exploring the subtle effects the geometry of three-manifolds imposes on the geometry of the surfaces used to construct them.
该项目的目的是研究涉及表面和三个manifolds的问题,主要是从小组理论和几何学的角度研究,还可以利用复杂分析和动态的思想和技术。 这包括(1)与R.P. Kent一起进行的一个持续的项目,该项目在映射类组中的凸cocompactness上,其中各个部分也是M. Bestvina,J。Brock,K。Bromberg和S. Dowdall的联合工作; (2)与玛格丽特(D. Margalit)进行的持续工作有关pseduo-anosov同构的动态及其与三个manifolds的关系,其中一部分也是与B. Farb的联合合作; (3)在表面上的长度功能和几何结构的各种项目涉及与Duchin和K. Rafi合作的工作,以及PI的研究生A. Bankovic,S.-W。的工作。 Fu,R。Maungchang和C. Uyanik.Surfaces-二维空间(如球表面或甜甜圈)已经研究了数百年,并且是数学中的基本和美丽的物体。对表面的研究本质上是有趣的,但也负责创建整个数学领域,从而塑造人们解决问题的方式。三维拓扑 - 对我们物理宇宙等三维空间的研究受到了表面研究的发展的深刻影响。这似乎并不奇怪,因为表面是二维空间,并且人们可能期望三维空间享受一些相同的特性。 虽然在这种情况下的直接类比确实产生了一些有趣的结果,但它的用作表面用作理解三个manifolds(三维空间)的构建块,从而最大程度地影响了该领域。 该项目的一个重要方面是通过(1)将开发的新技术“逆转信息流”的策略,将三个manifolds研究用于表面理论,而不是反之亦然,以及(2)探索三个manifords对构造它们的表面的几何形状的微妙效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Leininger其他文献
Christopher Leininger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Leininger', 18)}}的其他基金
Conference: 1, 2, 3: Curves, Surfaces, and 3-Manifolds
会议:1,2,3:曲线、曲面和 3-流形
- 批准号:
2246832 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Problems in geometry, topology, and group theory
几何、拓扑和群论问题
- 批准号:
2305286 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
Combinatorial and Algebraic Aspects of Geometric Structures
几何结构的组合和代数方面
- 批准号:
1922091 - 财政年份:2019
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
2019 Graduate Student Topology and Geometry Conference
2019年研究生拓扑与几何会议
- 批准号:
1856681 - 财政年份:2019
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Geometry, topology and group theory of surfaces
曲面的几何、拓扑和群论
- 批准号:
0905748 - 财政年份:2009
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
相似国自然基金
基于高阶读数的拓扑关联结构域识别和比对方法研究
- 批准号:62372156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大功率DLA模块液冷微通道力热耦合机理与多要素协同拓扑优化研究
- 批准号:52306111
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
扭转双层光子系统非厄米拓扑效应研究
- 批准号:12304340
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机非线性复杂系统的拓扑结构及其在交叉学科中的应用
- 批准号:12375034
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
染色质拓扑绝缘子介导的Linc-OP转录紊乱在老年相关骨质疏松症发生中的作用与机制研究
- 批准号:82371600
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Problems in geometry, topology, and group theory
几何、拓扑和群论问题
- 批准号:
2305286 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
- 批准号:
2203912 - 财政年份:2022
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Curves, Surfaces, and 3-Manifolds: Geometry, Topology, and Dynamics in the Mapping Class Group and Beyond
曲线、曲面和 3 流形:映射类组及其他领域中的几何、拓扑和动力学
- 批准号:
2231286 - 财政年份:2022
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Lie group actions in Geometry and Topology
几何和拓扑中的李群作用
- 批准号:
450239298 - 财政年份:2020
- 资助金额:
$ 24.2万 - 项目类别:
Heisenberg Grants
Geometry and computability in low-dimensional topology and group theory.
低维拓扑和群论中的几何和可计算性。
- 批准号:
2283616 - 财政年份:2019
- 资助金额:
$ 24.2万 - 项目类别:
Studentship