Convexity and Applications

凸性及其应用

基本信息

  • 批准号:
    0905776
  • 负责人:
  • 金额:
    $ 14.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

The PI's research is in the two closely related areas of asymptotic geometric analysis and convex geometry, and their applications.Classical convexity studies the geometry of convex bodies in Euclidean space of a fixed dimension. Asymptotic geometric analysis deals with geometric properties of finite dimensional convex bodies as the dimension grows to infinity. In her research the PI uses methods from both areas, as well as probabilistic tools and concentration phenomena, to get a better understanding of the structure of convex sets. The PI was able to prove a variety of results where such structural aspects of convex sets play a role: in approximation of convex bodies by polytopes; to establish a link between the so called order statistics (which are fundamental objects in statistics) and Orlicz norms; to determine the ``sizes" of certain (convex) sets that appear naturally in quantum information theory.A further focus of the PI's research is the development of affine invariants. The PI and her collaborators started the systematic study of (affine invariant) functionals associated with convex bodies and their corresponding inequalities. Among the most important such functionals are affine surface area and p-affine surface area . The affine isoperimetric inequalities related to them are more powerful than their Euclidean relatives and related to other important inequalities, e.g. the Santalo- and Inverse Santalo- inequalities. The latter is related to Mahler's conjecture which is still open in dimension 3 and higher.A mathematical description of a scientific or engineering question often requires lots of independent numbers, leading to a geometric space of high dimension. For example, if you want to specify the location of one gas molecule in a room then you need to report the front/back, side-to-side, and up/down locations of the molecule, using three numbers. The direction and speed of the molecule's motion takes another three numbers, and so to describe enough of the molecule's current state to allow us to predict its future motion from position and velocity we would need six separate numbers in all. If you want to track 100 distinct molecules of the air in the room then you will need 600 independent numerical coordinates to collect all of the relevant measurements. As these dimensions increase then the difficulty of sampling and computation go up rapidly, a phenomenon scientists and mathematicians sometimes call "the curse of dimensionality." However, there are also patterns that emerge as dimension increases which are not visible in low dimensions. We can exploit those patters, thus taking advantage of the "curse of dimensionality" to make it the "blessing of dimensionality". It is one purpose of this grant to study such high dimensional phenomena.
PI的研究是在两个密切相关的领域渐近几何分析和凸几何,以及它们的应用。经典凸性研究的几何凸体在欧氏空间的一个固定的维度。渐近几何分析研究有限维凸体的几何性质。在她的研究中,PI使用了这两个领域的方法,以及概率工具和集中现象,以更好地理解凸集的结构。PI能够证明各种结果,其中凸集的这种结构方面发挥了作用:用多面体近似凸体;建立所谓的顺序统计之间的联系(这是统计学的基本对象)和Orlicz规范;确定某些(凸)的“尺寸”PI研究的另一个重点是仿射不变量的发展。 PI和她的合作者开始系统地研究与凸体相关的(仿射不变)泛函及其相应的不等式。其中最重要的这样的泛函是仿射表面积和p-仿射表面积。与它们相关的仿射等周不等式比它们的欧几里得不等式更强大,并且与其他重要的不等式相关,例如Santalo-不等式和逆Santalo-不等式。后者与Mahler猜想有关,而Mahler猜想在3维及更高维空间中仍然是开放的。一个科学或工程问题的数学描述往往需要大量的独立数,从而导致一个高维几何空间。 例如,如果您想指定房间中一个气体分子的位置,则需要使用三个数字报告分子的前/后、侧到侧和上/下位置。分子运动的方向和速度需要另外三个数字,所以要描述足够的分子当前状态,让我们能够从位置和速度预测它的未来运动,我们总共需要六个独立的数字。 如果你想跟踪房间里100个不同的空气分子,那么你需要600个独立的数字坐标来收集所有相关的测量值。 随着这些维度的增加,采样和计算的难度迅速增加,科学家和数学家有时称之为“维度灾难”。“然而,随着维度的增加,也会出现一些模式,这些模式在低维度中是不可见的。我们可以利用这些模式,从而利用“维度灾难”,使其成为“维度祝福”。这是一个目的,这项补助金,以研究这种高维现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elisabeth Werner其他文献

The convex floating body of almost polygonal bodies
  • DOI:
    10.1007/bf00182948
  • 发表时间:
    1992-11-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Cartest Schütt;Elisabeth Werner
  • 通讯作者:
    Elisabeth Werner
Quasi-Banach spaces which are unique predual
  • DOI:
    10.1007/bf01450076
  • 发表时间:
    1988-12-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Elisabeth Werner
  • 通讯作者:
    Elisabeth Werner
A comprehensive study of fully automated combined upstream and downstream processes for the production of pharmaceutical proteins
  • DOI:
    10.1016/j.jbiotec.2007.07.338
  • 发表时间:
    2007-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Reiner Luttmann;Ali Kazemi-Seresht;Matthias Eicke;Elisabeth Werner;Birger Hahn;Andree Ellert
  • 通讯作者:
    Andree Ellert
Sequential injection analyzer for glycerol monitoring in yeast cultivation medium
  • DOI:
    10.1016/j.talanta.2006.05.072
  • 发表时间:
    2007-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Burkhard Horstkotte;Elisabeth Werner;Ali Kazemi Seresht;Gesine Cornelissen;Olaf Elsholz;Víctor Cerdà Martín;Reiner Luttmann
  • 通讯作者:
    Reiner Luttmann

Elisabeth Werner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elisabeth Werner', 18)}}的其他基金

Convexity and Applications
凸性及其应用
  • 批准号:
    2103482
  • 财政年份:
    2021
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
Convexity and Applications
凸性及其应用
  • 批准号:
    1811146
  • 财政年份:
    2018
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
Convexity and Applications
凸性及其应用
  • 批准号:
    1504701
  • 财政年份:
    2015
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
Convexity and Applications
凸性及其应用
  • 批准号:
    1207917
  • 财政年份:
    2012
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
Convexity and Applications
凸性及其应用
  • 批准号:
    0606603
  • 财政年份:
    2006
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Continuing Grant
Workshop on Asymptotic Geometry in Paris
巴黎渐近几何研讨会
  • 批准号:
    0535305
  • 财政年份:
    2006
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
Convexity and Applications
凸性及其应用
  • 批准号:
    0305191
  • 财政年份:
    2003
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
Convexity and Applications
凸性及其应用
  • 批准号:
    0072241
  • 财政年份:
    2000
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Banach Space Theory and Convexity Theory
数学科学:巴拿赫空间理论和凸性理论
  • 批准号:
    9401784
  • 财政年份:
    1994
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Banach Spaces and Convexity Theory
数学科学:巴拿赫空间和凸性理论
  • 批准号:
    8915893
  • 财政年份:
    1989
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Continuing Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

NSF-BSF: convexity and symmetry in high dimensions, with applications
NSF-BSF:高维凸性和对称性及其应用
  • 批准号:
    2247834
  • 财政年份:
    2023
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2022
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
  • 批准号:
    RGPIN-2022-02961
  • 财政年份:
    2022
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
  • 批准号:
    DGECR-2022-00431
  • 财政年份:
    2022
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Discovery Launch Supplement
Convexity and Applications
凸性及其应用
  • 批准号:
    2103482
  • 财政年份:
    2021
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2021
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2020
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2019
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2018
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Discovery Grants Program - Individual
Convexity and Applications
凸性及其应用
  • 批准号:
    1811146
  • 财政年份:
    2018
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了