Convexity and Applications

凸性及其应用

基本信息

  • 批准号:
    1207917
  • 负责人:
  • 金额:
    $ 16.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS 1207917, Principal Investigator: Elisabeth M. WernerThese research projects are in asymptotic geometric analysis and affine convex geometry. A main emphasis of her research is on affine invariant and high dimensional objects and phenomena and on links with other areas of mathematics and mathematical sciences (probability, statistics, optimization, information theory and quantum information theory). Much of the research in convex geometry in recent years has been directed to the study of affine and high dimensional aspects of convex bodies. The PI and her collaborators carried out a systematic study of some of the most important affine invariant functionals on convex bodies, the p-affine surface areas. They obtained extensions of those invariants to all convex bodies and for all p and established their corresponding affine isoperimetric inequalities (which are stronger than their Euclidean counterparts). There are numerous applications of these works. We only mention the PI's work, with Reisner and Schuett, on Mahler's conjecture. While not providing the solution (yet), their result is the strongest indication to date that the minimum is indeed attained for polytopes. Very recent developments open totally new directions. For one, the PI found new affine invariants and proved that those and the p-affine surface areas are certain entropies from information theory. In another direction, the PI, Artstein, Klartag and Schuett showed that affine isoperimetric inequality for log concave functions corresponds to a reverse log Sobolev inequality for entropy. These directions will be explored further. Contributions are also her work linking quantum information theory and high dimensional convex geometry, culminating in Aubrun's, Szarek's and her analysis of the "Additivity conjecture for Quantum channels" via asymptotic geometric analysis. The PI will continue to exploit the unique perspective given by asymptotic geometric analysis for problems in quantum information theory.A mathematical description of a scientific or engineering question often requires lots of independent numbers, leading to a geometric space of high dimension. For example, if you want to specify the location of one gas molecule in a room, then you need to report the front/back, side-to-side, and up/down locations of the molecule, using three numbers. The direction and speed of the molecule's motion takes another three numbers, and so to describe enough of the molecule's current state to allow us to predict its future motion from position and velocity we would need six separate numbers in all. If you want to track 100 distinct molecules of the air in the room then you will need 600 independent numerical coordinates to collect all of the relevant measurements. As these dimensions increase, the difficulty of sampling and computation go up rapidly, a phenomenon scientists and mathematicians sometimes call "the curse of dimensionality." However, there are also patterns that emerge as dimension increases which are not visible in low dimensions. We can exploit those patters, thus taking advantage of the "curse of dimensionality" to make it the "blessing of dimensionality". To study such high dimensional phenomena, is one purpose of this grant.
摘要奖:DMS 1207917,主要研究者:Elisabeth M.沃纳这些研究项目涉及渐进几何分析和仿射凸几何。她的研究的主要重点是仿射不变和高维对象和现象,并与数学和数学科学(概率,统计,优化,信息论和量子信息论)的其他领域的联系。近年来,凸几何的许多研究都集中在凸体的仿射和高维方面。PI和她的合作者对凸体上一些最重要的仿射不变泛函进行了系统的研究,即p-仿射表面积。 他们得到了这些不变量的扩展到所有凸体和所有p,并建立了相应的仿射等周不等式(比欧几里得不等式更强)。这些作品有许多应用。我们只提到PI的工作,与Reisner和Schuett,对马勒的猜想。虽然没有提供解决方案(尚未),但他们的结果是迄今为止最强烈的迹象表明,多面体确实达到了最小值。最近的发展开辟了全新的方向。首先,PI发现了新的仿射不变量,并证明了这些不变量和p-仿射表面积是信息论中的某些熵。在另一个方向上,PI,Artstein,Klartag和Schuett证明了对数凹函数的仿射等周不等式对应于熵的逆对数Sobolev不等式。这些方向将进一步探索。贡献也是她的工作联系量子信息理论和高维凸几何,最终在Aubrun的,Szarek的和她的分析“加性猜想量子通道”通过渐近几何分析。PI将继续利用渐近几何分析的独特视角来解决量子信息理论中的问题。一个科学或工程问题的数学描述往往需要大量的独立数,从而导致高维几何空间。 例如,如果要指定房间中一个气体分子的位置,则需要使用三个数字报告分子的前/后、侧到侧和上/下位置。分子运动的方向和速度需要另外三个数字,所以要描述足够的分子当前状态,让我们能够从位置和速度预测它的未来运动,我们总共需要六个独立的数字。 如果你想跟踪房间里100个不同的空气分子,那么你需要600个独立的数字坐标来收集所有相关的测量值。 随着这些维度的增加,采样和计算的难度迅速上升,科学家和数学家有时称之为“维度灾难”。“然而,随着维度的增加,也会出现一些模式,这些模式在低维度中是不可见的。 我们可以利用这些模式,从而利用“维度灾难”,使其成为“维度祝福”。研究这种高维现象,是这项资助的目的之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elisabeth Werner其他文献

The convex floating body of almost polygonal bodies
  • DOI:
    10.1007/bf00182948
  • 发表时间:
    1992-11-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Cartest Schütt;Elisabeth Werner
  • 通讯作者:
    Elisabeth Werner
Quasi-Banach spaces which are unique predual
  • DOI:
    10.1007/bf01450076
  • 发表时间:
    1988-12-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Elisabeth Werner
  • 通讯作者:
    Elisabeth Werner
A comprehensive study of fully automated combined upstream and downstream processes for the production of pharmaceutical proteins
  • DOI:
    10.1016/j.jbiotec.2007.07.338
  • 发表时间:
    2007-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Reiner Luttmann;Ali Kazemi-Seresht;Matthias Eicke;Elisabeth Werner;Birger Hahn;Andree Ellert
  • 通讯作者:
    Andree Ellert
Sequential injection analyzer for glycerol monitoring in yeast cultivation medium
  • DOI:
    10.1016/j.talanta.2006.05.072
  • 发表时间:
    2007-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Burkhard Horstkotte;Elisabeth Werner;Ali Kazemi Seresht;Gesine Cornelissen;Olaf Elsholz;Víctor Cerdà Martín;Reiner Luttmann
  • 通讯作者:
    Reiner Luttmann

Elisabeth Werner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elisabeth Werner', 18)}}的其他基金

Convexity and Applications
凸性及其应用
  • 批准号:
    2103482
  • 财政年份:
    2021
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Standard Grant
Convexity and Applications
凸性及其应用
  • 批准号:
    1811146
  • 财政年份:
    2018
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Standard Grant
Convexity and Applications
凸性及其应用
  • 批准号:
    1504701
  • 财政年份:
    2015
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Standard Grant
Convexity and Applications
凸性及其应用
  • 批准号:
    0905776
  • 财政年份:
    2009
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Standard Grant
Convexity and Applications
凸性及其应用
  • 批准号:
    0606603
  • 财政年份:
    2006
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Continuing Grant
Workshop on Asymptotic Geometry in Paris
巴黎渐近几何研讨会
  • 批准号:
    0535305
  • 财政年份:
    2006
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Standard Grant
Convexity and Applications
凸性及其应用
  • 批准号:
    0305191
  • 财政年份:
    2003
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Standard Grant
Convexity and Applications
凸性及其应用
  • 批准号:
    0072241
  • 财政年份:
    2000
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Banach Space Theory and Convexity Theory
数学科学:巴拿赫空间理论和凸性理论
  • 批准号:
    9401784
  • 财政年份:
    1994
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Banach Spaces and Convexity Theory
数学科学:巴拿赫空间和凸性理论
  • 批准号:
    8915893
  • 财政年份:
    1989
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Continuing Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

NSF-BSF: convexity and symmetry in high dimensions, with applications
NSF-BSF:高维凸性和对称性及其应用
  • 批准号:
    2247834
  • 财政年份:
    2023
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Standard Grant
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2022
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
  • 批准号:
    DGECR-2022-00431
  • 财政年份:
    2022
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Discovery Launch Supplement
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
  • 批准号:
    RGPIN-2022-02961
  • 财政年份:
    2022
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Discovery Grants Program - Individual
Convexity and Applications
凸性及其应用
  • 批准号:
    2103482
  • 财政年份:
    2021
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Standard Grant
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2021
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2020
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2019
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
  • 批准号:
    RGPIN-2018-05159
  • 财政年份:
    2018
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Discovery Grants Program - Individual
Convexity and Applications
凸性及其应用
  • 批准号:
    1811146
  • 财政年份:
    2018
  • 资助金额:
    $ 16.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了