Current Density Based Electrical Impedance Tomography, an Emerging Hybrid Imaging Technique

基于电流密度的电阻抗断层扫描,一种新兴的混合成像技术

基本信息

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The investigator and his collaborators study a new non-invasive method for imaging the electrical conductivity of the inside of the body. Inner knowledge of the conductivity has found applications in various fields ranging from Medicine, Geophysics, Environmental Sciences, to Nondestructive Testing and Mine Detection, to mention only some. The model is based on the Maxwell system and combines methods from Electrical Impedance Tomography and Current Density Imaging. The novelty lies in the augmentation of the Maxwell model with the knowledge of the magnitude of the current density field generated while maintaining a voltage at the boundary. The latter data is currently obtained by using Magnetic Resonance measurements of the magnetic field. Mathematically, the problem is to study minimal surfaces in a singular Riemannian space with a metric determined by the magnitude of the current density field. Alternatively, the problem can be reduced to a Non-smooth Optimization problem. Taking advantage of the tools from the areas of Inverse Problems, Partial Differential Equations, Riemannian Geometry, Geometric Measure Theory and Non-smooth Optimization the investigator and his collaborators aim to change the existing and accepted theories and provide mathematical support and methods to image inner conductivity accurately and with high resolution.This investigation belongs to the current government research priority on Information Technology. The results of this study are to produce new methodologies for non-invasive imaging of the interior of conductive bodies, such as the human body. The benefits to society are important since one componenent of the results of this study concerns the affordability of the new methods applied to Medical Imaging. More precisely, the new technology is to complement the classical Magnetic Resonance Imaging scan, method which is fairly expensive at the moment. This investigation integrates research and education in two ways. On the one hand, an integrate part is the training and mentoring of graduate and undergraduate students, including from the under-represented categories of students. On the other hand, the investigator is concurrently designing a special topics course, whose scope is based on this study.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。研究人员和他的合作者研究了一种新的非侵入性方法,用于成像身体内部的电导率。电导率的内在知识已经在从医学、地球物理学、环境科学到无损检测和地雷探测的各个领域中找到了应用,仅举几例。该模型基于麦克斯韦系统,并结合了电阻抗断层扫描和电流密度成像的方法。新颖之处在于增强的麦克斯韦模型与知识的电流密度场的大小,同时保持在边界处的电压。后者的数据目前是通过使用磁场的磁共振测量获得的。在数学上,问题是研究极小曲面在奇异黎曼空间与度量所确定的电流密度场的大小。或者,该问题可以简化为非光滑优化问题。利用反问题、偏微分方程、黎曼几何、几何测度理论和非光滑优化等领域的工具,研究者和他的合作者旨在改变现有的和公认的理论,并提供数学支持和方法,以准确和高分辨率地成像内部电导率。这项研究的结果是产生新的方法,用于非侵入性成像的内部导电体,如人体。对社会的好处是重要的,因为本研究的结果的一个组成部分涉及适用于医学成像的新方法的可负担性。更确切地说,新技术是对经典磁共振成像扫描的补充,这种方法目前相当昂贵。这项调查以两种方式将研究和教育结合起来。一方面,一个不可分割的部分是对研究生和本科生的培训和指导,包括来自代表性不足的学生类别。另一方面,调查员正在同时设计一个专题课程,其范围以这项研究为基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandru Tamasan其他文献

On a Cauchy-type singular integral equation for x-ray computerized tomography with partial measurement
部分测量X射线计算机断层摄影的柯西型奇异积分方程
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    藤原宏志;Kamran Sadiq;Alexandru Tamasan
  • 通讯作者:
    Alexandru Tamasan
An inverse boundary value problem in two-dimensional transport
二维输运中的逆边值问题
  • DOI:
    10.1088/0266-5611/18/1/314
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandru Tamasan
  • 通讯作者:
    Alexandru Tamasan

Alexandru Tamasan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandru Tamasan', 18)}}的其他基金

Analytical and Computational Approaches for Quantitative Tomography of Tissue
组织定量断层扫描的分析和计算方法
  • 批准号:
    1907097
  • 财政年份:
    2019
  • 资助金额:
    $ 14.05万
  • 项目类别:
    Standard Grant
Current Density Impedance Imaging from Minimal Interior Data
根据最少的内部数据进行电流密度阻抗成像
  • 批准号:
    1312883
  • 财政年份:
    2013
  • 资助金额:
    $ 14.05万
  • 项目类别:
    Continuing Grant

相似海外基金

Development of a long-term thermochemical energy storage system with simutaneous high heat power and storage density by utilizating a moving bed reactor based on nano coated salt hydrates
利用基于纳米涂层盐水合物的移动床反应器开发同时具有高热功率和存储密度的长期热化学储能系统
  • 批准号:
    24K08316
  • 财政年份:
    2024
  • 资助金额:
    $ 14.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Identifying Hydrogen-Density Based Laws for Plasticity in Polycrystalline Materials
合作研究:确定基于氢密度的多晶材料塑性定律
  • 批准号:
    2303108
  • 财政年份:
    2023
  • 资助金额:
    $ 14.05万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials
合作研究:CDS
  • 批准号:
    2302763
  • 财政年份:
    2023
  • 资助金额:
    $ 14.05万
  • 项目类别:
    Continuing Grant
Development of Electrolytes with High Energy Density for Redox-Flow Batteries Based on Chemistry of Solubility
基于溶解度化学的氧化还原液流电池高能量密度电解质的开发
  • 批准号:
    23K04918
  • 财政年份:
    2023
  • 资助金额:
    $ 14.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploring Properties of the Inner Crust of Neutron Stars Through Band Theory Calculations Based on Superfluid Density Functional Theory
基于超流体密度泛函理论的能带理论计算探索中子星内壳的性质
  • 批准号:
    23K03410
  • 财政年份:
    2023
  • 资助金额:
    $ 14.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials
合作研究:CDS
  • 批准号:
    2302764
  • 财政年份:
    2023
  • 资助金额:
    $ 14.05万
  • 项目类别:
    Continuing Grant
Collaborative Research: Identifying Hydrogen-Density Based Laws for Plasticity in Polycrystalline Materials
合作研究:确定基于氢密度的多晶材料塑性定律
  • 批准号:
    2303109
  • 财政年份:
    2023
  • 资助金额:
    $ 14.05万
  • 项目类别:
    Standard Grant
Mapping of crustal strength of Japan: Bayesian-based unified estimation of seismic velocity and density structures
日本地壳强度绘图:基于贝叶斯的地震速度和密度结构统一估计
  • 批准号:
    23K13197
  • 财政年份:
    2023
  • 资助金额:
    $ 14.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantum Computing based density functionals for fast and accurate materials and chemistry simulations
基于量子计算的密度泛函,用于快速、准确的材料和化学模拟
  • 批准号:
    10074167
  • 财政年份:
    2023
  • 资助金额:
    $ 14.05万
  • 项目类别:
    Feasibility Studies
Development of SiC Based High Power Density Industry Drives
SiC基高功率密度产业驱动器发展
  • 批准号:
    566470-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 14.05万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了