Current Density Impedance Imaging from Minimal Interior Data

根据最少的内部数据进行电流密度阻抗成像

基本信息

项目摘要

This project concerns the problem of conductivity imaging from minimal knowledge of boundary and interior data. The mathematical formulation leads to the non-linear partial differential equation of 1-Laplacian with a variable coefficient. This is a singular and degenerate elliptic equation for which solutions can be defined in the viscosity sense. While not all viscosity solutions are of interest in the inverse conductivity problem, it turns out that solutions of interest are of weighted least gradient. One direction of research considers the study of weighted least gradient functions (in the sense of Radon measures) with prescribed boundary data. A major goals is to prove uniqueness and stability for the minimization problem in the larger space of functions of bounded variations. Delicate questions concerning the regularity of the weight, as well as what happens when the coefficient vanishes on open subsets are to be investigated. Another direction of research concerns the understanding of types of boundary data which would a priori exclude singularities. Existence of such data would then reduce the problem to a Hamilton-Jacobi system, in which the role of time is played by one spatial variable. More generally, some regularization techniques coming from the algorithmic side of Image Processing will be analyzed in the context of the weighted minimum gradient problem. On an second facet of imaging, the PI will investigate the relation between the range conditions that characterize the data obtained in the attenuated X-ray transform, and the theory of A-analytic maps, as well as a stochastic model arising in X-ray tomography when low count radiation does not warrant the law of large numbers assumed in the transport model.The proposed research is in the area of Inverse Problems of hybrid type, a hot topic in imaging sciences that uses coupled Physics to determine a material property inside a body. The PI aims to find and analyze new mathematical methods which quantitatively recover the electrical conductivity (a characteristic encoding responses to electromagnetic excitations) with significantly higher accuracy and resolution than currently possible. A quantitative display that not only reveals the inner structure of the object, but also allows for discriminating in the status of a same part. Applications range from nondestructive testing in Material Sciences to Medical Imaging and Diagnostic. Of special interest in medical diagnostic applications, the use of harmless radiation to image with high resolution would decrease the current rate of misdiagnosis by methods such as CAT-scans, and would detect defective tissue at an earlier stage of development, with the benefit of increasing the odds of a cure. At least two students will participate and be trained in this investigation.
该项目关注的问题,从最小的边界和内部数据的知识电导率成像。数学公式导致的非线性偏微分方程的1-拉普拉斯变系数。这是一个奇异的退化椭圆方程,其解可以定义在粘性意义下。虽然不是所有的粘度解决方案是感兴趣的逆电导率问题,它原来的解决方案的利益是加权最小梯度。研究的一个方向是考虑加权最小梯度函数(在氡措施的意义上)与规定的边界数据的研究。一个主要的目标是证明极小化问题在较大的有界变差函数空间中的唯一性和稳定性。微妙的问题有关的规律性的重量,以及会发生什么时,系数消失的开放子集进行调查。研究的另一个方向涉及的类型的边界数据,将先验排除奇点的理解。这样的数据的存在,然后将问题简化为一个哈密尔顿-雅可比系统,其中时间的作用是由一个空间变量。更一般地说,一些正则化技术来自图像处理的算法方面将在加权最小梯度问题的背景下进行分析。在成像的第二个方面,PI将研究表征在衰减X射线变换中获得的数据的范围条件与A解析映射理论之间的关系,以及当低计数辐射不保证传输模型中假设的大数定律时在X射线层析成像中产生的随机模型。成像科学中的一个热门话题,使用耦合物理来确定体内的材料属性。PI旨在寻找和分析新的数学方法,这些方法可以定量恢复电导率(对电磁激励的特征编码响应),其精度和分辨率比目前可能的要高得多。一种定量显示,不仅可以显示物体的内部结构,还可以区分同一部分的状态。应用范围从材料科学的无损检测到医学成像和诊断。在医疗诊断应用中,使用无害辐射以高分辨率成像将降低目前通过CAT扫描等方法的误诊率,并将在发育的早期阶段检测到有缺陷的组织,从而增加治愈的可能性。至少有两名学生将参加并接受培训,在这项调查。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandru Tamasan其他文献

On a Cauchy-type singular integral equation for x-ray computerized tomography with partial measurement
部分测量X射线计算机断层摄影的柯西型奇异积分方程
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    藤原宏志;Kamran Sadiq;Alexandru Tamasan
  • 通讯作者:
    Alexandru Tamasan
An inverse boundary value problem in two-dimensional transport
二维输运中的逆边值问题
  • DOI:
    10.1088/0266-5611/18/1/314
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandru Tamasan
  • 通讯作者:
    Alexandru Tamasan

Alexandru Tamasan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandru Tamasan', 18)}}的其他基金

Analytical and Computational Approaches for Quantitative Tomography of Tissue
组织定量断层扫描的分析和计算方法
  • 批准号:
    1907097
  • 财政年份:
    2019
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Current Density Based Electrical Impedance Tomography, an Emerging Hybrid Imaging Technique
基于电流密度的电阻抗断层扫描,一种新兴的混合成像技术
  • 批准号:
    0905799
  • 财政年份:
    2009
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
  • 批准号:
    2321862
  • 财政年份:
    2024
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Cooperative Agreement
Microscale radiography of hydrodynamic instabilities mitigation in magnetized high-density laser plasmas
磁化高密度激光等离子体中流体动力学不稳定性缓解的微尺度射线照相
  • 批准号:
    24K06988
  • 财政年份:
    2024
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unveiling the Physics of High-Density Relativistic Pair Plasma Jets in the Laboratory
在实验室中揭示高密度相对论对等离子体射流的物理原理
  • 批准号:
    EP/Y035038/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Research Grant
Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
  • 批准号:
    2415034
  • 财政年份:
    2024
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Continuing Grant
ERI: Unravel Charge Transfer Mechanisms in the Bulk and at Interphases and Interfaces of Ionogel Solid Electrolytes for High-Power-Density All-Solid-State Li Metal Batteries
ERI:揭示高功率密度全固态锂金属电池的离子凝胶固体电解质的本体以及相间和界面的电荷转移机制
  • 批准号:
    2347542
  • 财政年份:
    2024
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Standard Grant
Room Temperature High Energy Density Sodium-Sulfur Batteries
室温高能量密度钠硫电池
  • 批准号:
    DP240101548
  • 财政年份:
    2024
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Discovery Projects
New water-inserted perovskites for high-current-density water electrolysis
用于高电流密度水电解的新型插水钙钛矿
  • 批准号:
    DE240101013
  • 财政年份:
    2024
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Discovery Early Career Researcher Award
Revolutionizing Tactile AI: Developing a Soft, Liquid-Structured, High Density, 3-Axis Tactile Sensor
彻底改变触觉 AI:开发柔软、液体结构、高密度、3 轴触觉传感器
  • 批准号:
    24K20874
  • 财政年份:
    2024
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Goldilocks convergence tools and best practices for numerical approximations in Density Functional Theory calculations
密度泛函理论计算中数值近似的金发姑娘收敛工具和最佳实践
  • 批准号:
    EP/Z530657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.78万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了