Analytical and Computational Approaches for Quantitative Tomography of Tissue

组织定量断层扫描的分析和计算方法

基本信息

项目摘要

This project will develop new non-invasive quantitative tomographic methods by imaging the electrical properties of biological matter, based on coupled physics inverse problems. The research holds promise to enable new technologies for decoding data used in current medical diagnostic practices and biomedical research by providing the theoretical basis for new imaging methods of higher accuracy and resolution than existing ones. The quantitative distribution of electrical conductivity and permittivity is known to distinguish a benign tumor from a malignant one, it can apply to monitor the pulmonary function of the lung, the thoracic blood volume, hyperthermia, the gastrointestinal function in newborns in intensive care, etc. This project will advance the understanding of information content in the data and produce quantitative images of biological tissues with anisotropic structures while using an optimal number of measurements. Another facet of this project is the development of robust methods which produce quantitative images of biological structure corresponding to frequencies where contrast is optimal. As a consequence, it will provide new tools in biological research by enabling imaging of biological processes at a smaller scale. During the course of the project, graduate students will be trained in an interdisciplinary area of research. The project's findings will be integrated in a student seminar and a special topics course for Mathematics, Physics, and Engineering students at the University of Central Florida.The project integrates novel advances in the mathematical analysis of nonlinear inverse problems with engineering advances in sensor design and data acquisition and aims to shift the paradigm in some of the current engineering practices. The analytical component of the project lies at the intersection of nonlinear Inverse Problems, Geometry, Optimization, and Geometric Measure theory. The principal investigator (PI) plans to improve the current knowledge of the anisotropic least gradient problems arising in physical models which are close to the actual engineering practices. In particular, the PI seeks to determine the anisotropic structure of biological tissue in reconstruction of two-tensors by employing minimal interior data. Another facet of this project seeks to produce quantitative images of the complex biological structure at radio frequencies by coupling the nonlinear inverse problem techniques for Maxwell electromagnetics with the quantum model of resonance of the magnetic spin. The project also aims to determine the electric conductivity distribution in materials with infinite limiting contrast on graphs or neural networks. Based on the analytical findings, the reconstruction methods will be translated in algorithms and tested on simulated data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将基于耦合物理逆问题,通过成像生物物质的电学特性,开发新的非侵入性定量层析方法。该研究有望为当前医学诊断实践和生物医学研究中使用的解码数据提供新技术,为比现有成像方法更高精度和分辨率的新成像方法提供理论基础。电导率和介电常数的定量分布被认为是区分良恶性肿瘤的重要指标,可用于监护新生儿肺功能、胸血容量、热疗、胃肠功能等方面的监测。该项目将促进对数据中信息内容的理解,并在使用最佳测量次数的同时产生具有各向异性结构的生物组织的定量图像。该项目的另一个方面是开发健壮的方法,生成与对比度最佳的频率相对应的生物结构定量图像。因此,它将为生物研究提供新的工具,使生物过程的成像在更小的规模。在项目过程中,研究生将接受跨学科研究领域的培训。该项目的研究结果将被整合到佛罗里达中央大学的学生研讨会和数学、物理和工程专业学生的专题课程中。该项目将非线性逆问题的数学分析的新进展与传感器设计和数据采集的工程进展相结合,旨在改变当前一些工程实践中的范式。该项目的分析部分位于非线性反问题,几何,优化和几何测量理论的交叉点。首席研究员(PI)计划改进目前在物理模型中出现的各向异性最小梯度问题的知识,使其更接近实际工程实践。特别是,PI试图确定生物组织的各向异性结构,在重建双张量采用最小的内部数据。该项目的另一个方面是通过将麦克斯韦电磁学的非线性反问题技术与磁自旋共振的量子模型相结合,寻求在无线电频率下产生复杂生物结构的定量图像。该项目还旨在通过图形或神经网络的无限极限对比度确定材料中的电导率分布。基于分析结果,重建方法将转化为算法并在模拟数据上进行测试。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Partial inversion of the 2D attenuated X-ray transform with data on an arc
使用弧上的数据对 2D 衰减 X 射线变换进行部分反演
  • DOI:
    10.3934/ipi.2021047
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fujiwara Hiroshi;Sadiq Kamran;Tamasan Alexandru
  • 通讯作者:
    Tamasan Alexandru
A Fourier approach to the inverse source problem in an absorbing and anisotropic scattering medium
  • DOI:
    10.1088/1361-6420/ab4d98
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    H. Fujiwara;K. Sadiq;A. Tamasan
  • 通讯作者:
    H. Fujiwara;K. Sadiq;A. Tamasan
Numerical Reconstruction of Radiative Sources from Partial Boundary Measurements
根据部分边界测量对辐射源进行数值重建
  • DOI:
    10.1137/22m1507449
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Fujiwara, Hiroshi;Sadiq, Kamran;Tamasan, Alexandru
  • 通讯作者:
    Tamasan, Alexandru
On a local inversion of the X-ray transform from one sided data
基于一侧数据的 X 射线变换的局部反演
NUMERICAL REALIZATION OF A NEW GENERATION TOMOGRAPHY ALGORITHM BASED ON THE CAUCHY-TYPE INTEGRAL FORMULA
基于柯西型积分公式的新一代层析成像算法的数值实现
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandru Tamasan其他文献

On a Cauchy-type singular integral equation for x-ray computerized tomography with partial measurement
部分测量X射线计算机断层摄影的柯西型奇异积分方程
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    藤原宏志;Kamran Sadiq;Alexandru Tamasan
  • 通讯作者:
    Alexandru Tamasan
An inverse boundary value problem in two-dimensional transport
二维输运中的逆边值问题
  • DOI:
    10.1088/0266-5611/18/1/314
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandru Tamasan
  • 通讯作者:
    Alexandru Tamasan

Alexandru Tamasan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandru Tamasan', 18)}}的其他基金

Current Density Impedance Imaging from Minimal Interior Data
根据最少的内部数据进行电流密度阻抗成像
  • 批准号:
    1312883
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Current Density Based Electrical Impedance Tomography, an Emerging Hybrid Imaging Technique
基于电流密度的电阻抗断层扫描,一种新兴的混合成像技术
  • 批准号:
    0905799
  • 财政年份:
    2009
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    EU-Funded
Conference: Computational and Psycholinguistic Approaches to Second Language Acquisition
会议:第二语言习得的计算和心理语言学方法
  • 批准号:
    2336394
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
  • 批准号:
    2311297
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Development of Low Power Consumption Multiferroic Memory using Experimental and Computational Approaches
使用实验和计算方法开发低功耗多铁存储器
  • 批准号:
    23KJ0919
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Integration of Immunologic Phenotyping with Computational Approaches to Predict Clinical Trajectory in Septic Patients
免疫表型分析与计算方法相结合来预测脓毒症患者的临床轨迹
  • 批准号:
    10708534
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Bottom-up and top-down computational modeling approaches to study CMV retinitis
研究 CMV 视网膜炎的自下而上和自上而下的计算模型方法
  • 批准号:
    10748709
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Teachers' decision-making process: Computational and neuroimaging approaches
教师的决策过程:计算和神经影像方法
  • 批准号:
    23KJ1861
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSFDEB-NERC: Integrating computational, phenotypic, and population-genomic approaches to reveal processes of cryptic speciation and gene flow in Madag
NSFDEB-NERC:整合计算、表型和群体基因组方法来揭示马达格神秘物种形成和基因流的过程
  • 批准号:
    NE/X002071/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Using advanced genomic and computational approaches to discover and characterize novel genetic variants in neurodevelopmental disorders.
使用先进的基因组和计算方法来发现和表征神经发育障碍中的新遗传变异。
  • 批准号:
    491213
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship Programs
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
  • 批准号:
    10585301
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了