Quantum Dots as an Experimental Basis for Studying Well-defined Many-Body Hamiltonians and Quantum Phase Transitions
量子点作为研究明确的多体哈密顿量和量子相变的实验基础
基本信息
- 批准号:0906062
- 负责人:
- 金额:$ 63.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****NON-TECHNICAL ABSTRACT****Modern technology relies on the ability to understand the electronic properties of materials. Toward this end, physicists develop theories in which individual components, such as a site where electrons are bound, interact with each other. Fully testing the predictions of a theory can be difficult, because material parameters are not individually tunable. This award supports a project that follows an alternative approach. Well-understood semiconductor materials and advanced patterning techniques are used to build nanoscale sites or ?quantum dots? that trap electrons. The great advantage to this approach is that parameters of the theory, such as the ability for the trapped electron in the dot to interact with the reservoir of electrons in the material, can be controlled electronically. The project uses this control to drive a drastic change in the electrons? behavior. Usually, one thinks of electrons acting independently, as they do when flowing through a copper wire. In contrast, the quantum dot structure can be tuned so that the electrons behave as a collective entity. This change is analogous to the transition from water to ice, except that it is not caused by temperature but by quantum fluctuations. The effect of quantum fluctuations is much less understood than their classical counterpart, temperature fluctuations. The goal of this project is to observe this quantum phase transition and quantitatively test current theories that seek to explain these phenomena. This project will train students and post-docs in advanced physical theories, semiconductor processing skills, and precision measurement techniques that will prepare them for cutting-edge careers in academia or industry.****TECHNICAL ABSTRACT****A crucial challenge in the field of correlated electron physics is to find an experimental system that corresponds to an interacting many-body Hamiltonian and allows fine control over the parameters of the Hamiltonian. This award supports a project that will meet the challenge by using well-understood AlGaAs/GaAs heterostructures and advanced patterning techniques to fabricate gated nano-structures. In these structures, small droplets of electrons called quantum dots are isolated from the remaining electron reservoirs. The two Hamiltonians of interest are the two-channel Kondo and the two-impurity Kondo Hamiltonians. In the two-channel Kondo system two independent reservoirs of delocalized electrons compete to screen an electron spin bound to the localized site (a quantum dot). In the two-impurity Kondo Hamiltonian an electron reservoir and a spin on a localized site compete to screen another spin on a second localized site. The advantage of using gated quantum dots is that parameters such as inter-dot interactions and dot-reservoir tunneling rates can be precisely measured and electrostatically tuned. This project will utilize this control to drive a quantum phase transition between a Fermi liquid and a non-Fermi liquid state. The goal is to tune to the very sensitive quantum critical point and quantitatively test theoretical predictions of how the highly-correlated non-Fermi liquid state evolves into the more conventional Fermi liquid state under the influence of relevant perturbations such as magnetic field and exchange coupling. This project will provide valuable training to students and post-docs in advanced many-body theories, semiconductor processing skills, and precision measurement techniques that will prepare them for cutting-edge careers in academia or industry.
* 非技术摘要 * 现代技术依赖于理解材料的电子特性的能力。 为此,物理学家发展了一些理论,在这些理论中,各个组成部分(如电子被束缚的位置)相互作用。完全测试理论的预测可能很困难,因为材料参数不是单独可调的。 该奖项支持遵循替代方法的项目。 众所周知的半导体材料和先进的图案化技术用于建立纳米级网站或?量子点?能捕获电子这种方法的最大优点是理论参数,例如点中捕获的电子与材料中电子库相互作用的能力,可以通过电子方式控制。 该项目使用这种控制来驱动电子的剧烈变化?行为通常,人们认为电子是独立作用的,就像它们流过铜线一样。相比之下,量子点结构可以被调整,使得电子表现为一个集体实体。这种变化类似于从水到冰的转变,只是它不是由温度引起的,而是由量子涨落引起的。量子涨落的影响比它们的经典对应物温度涨落要少得多。该项目的目标是观察这种量子相变,并定量测试目前试图解释这些现象的理论。该项目将培养学生和博士后先进的物理理论,半导体加工技能和精密测量技术,这将使他们为学术界或工业界的尖端职业做好准备。相关电子物理学领域的一个关键挑战是找到一个实验系统,该系统对应于相互作用的多体哈密顿量,并允许对哈密顿量的参数进行精细控制。该奖项支持一个项目,该项目将通过使用众所周知的AlGaAs/GaAs异质结构和先进的图案化技术来制造门控纳米结构来应对挑战。在这些结构中,称为量子点的小电子滴与其余的电子库隔离。两个感兴趣的哈密顿量是双通道近藤和双杂质近藤哈密顿量。 在双通道近藤系统中,两个独立的离域电子库竞争屏蔽束缚在定域位置(量子点)的电子自旋。 在双杂质近藤哈密顿量中,一个电子库和一个局域位置上的自旋竞争屏蔽另一个局域位置上的自旋。 使用门控量子点的优点是可以精确测量和静电调节点间相互作用和点库隧穿速率等参数。该项目将利用这种控制来驱动费米液体和非费米液体状态之间的量子相变。目标是调谐到非常敏感的量子临界点,并定量测试高度相关的非费米液体状态如何在相关扰动(如磁场和交换耦合)的影响下演变为更传统的费米液体状态的理论预测。该项目将为学生和博士后提供先进的多体理论,半导体加工技能和精密测量技术方面的宝贵培训,使他们为学术界或工业界的尖端职业做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Goldhaber-Gordon其他文献
New spin on correlated electrons
相关电子的新旋转
- DOI:
10.1038/434451a - 发表时间:
2005-03-23 - 期刊:
- 影响因子:48.500
- 作者:
Ronald M. Potok;David Goldhaber-Gordon - 通讯作者:
David Goldhaber-Gordon
Magnetic lattice surprise
磁晶格惊喜
- DOI:
10.1038/nphys610 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:18.400
- 作者:
Lindsay S. Moore;David Goldhaber-Gordon - 通讯作者:
David Goldhaber-Gordon
Greetings from Three Generations of Goldhabers to Academician Ginzburg, on the Occasion of Your 90th Birthday
- DOI:
10.1007/s10948-006-0174-7 - 发表时间:
2006-12-09 - 期刊:
- 影响因子:1.700
- 作者:
David Goldhaber-Gordon - 通讯作者:
David Goldhaber-Gordon
Making light of electrons
轻视电子
- DOI:
10.1038/nnano.2011.53 - 发表时间:
2011-04-06 - 期刊:
- 影响因子:34.900
- 作者:
David Goldhaber-Gordon - 通讯作者:
David Goldhaber-Gordon
Topological bands and correlated states in helical trilayer graphene
螺旋三层石墨烯中的拓扑带和相关态
- DOI:
10.1038/s41567-024-02731-6 - 发表时间:
2025-01-07 - 期刊:
- 影响因子:18.400
- 作者:
Li-Qiao Xia;Sergio C. de la Barrera;Aviram Uri;Aaron Sharpe;Yves H. Kwan;Ziyan Zhu;Kenji Watanabe;Takashi Taniguchi;David Goldhaber-Gordon;Liang Fu;Trithep Devakul;Pablo Jarillo-Herrero - 通讯作者:
Pablo Jarillo-Herrero
David Goldhaber-Gordon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Goldhaber-Gordon', 18)}}的其他基金
Spatiotemporal Measurements of the Kondo Cloud
近藤云的时空测量
- 批准号:
1608962 - 财政年份:2016
- 资助金额:
$ 63.5万 - 项目类别:
Continuing Grant
NSEC: CENTER FOR PROBING THE NANOSCALE
NSEC:纳米尺度探测中心
- 批准号:
0830228 - 财政年份:2009
- 资助金额:
$ 63.5万 - 项目类别:
Cooperative Agreement
CAREER: Single-Electron Transistors as a Laboratory for Strongly-Correlated Electron Physics
职业:单电子晶体管作为强相关电子物理实验室
- 批准号:
0349354 - 财政年份:2004
- 资助金额:
$ 63.5万 - 项目类别:
Continuing Grant
相似国自然基金
宏观三维C-dots/Ta3N5纳米孔材料的可控构筑及其光催化全分解水性能研究
- 批准号:21872023
- 批准年份:2018
- 资助金额:66.0 万元
- 项目类别:面上项目
不同形貌C3N4/C-Dots高效光催化材料的制备及其光催化降解典型PPCPs的机制研究
- 批准号:21677040
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
基于病例队列随访设计的流动人口肺结核病人DOTS实施质量改进策略研究
- 批准号:71473152
- 批准年份:2014
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Controlling the Deformability of Quantum Dots Solids for Wearable NIR Optoelectronics
职业:控制可穿戴近红外光电器件的量子点固体的变形能力
- 批准号:
2337974 - 财政年份:2024
- 资助金额:
$ 63.5万 - 项目类别:
Continuing Grant
STTR Phase I: High-Sensitivity Flexible Quantum Dots/Graphene X-Ray Detectors and Imaging Systems
STTR 第一阶段:高灵敏度柔性量子点/石墨烯 X 射线探测器和成像系统
- 批准号:
2322053 - 财政年份:2024
- 资助金额:
$ 63.5万 - 项目类别:
Standard Grant
Mid-infrared quantum dots for room temperature photodetectors and emitters
用于室温光电探测器和发射器的中红外量子点
- 批准号:
DP240101309 - 财政年份:2024
- 资助金额:
$ 63.5万 - 项目类别:
Discovery Projects
RII Track-4:NSF: In-vitro Cytotoxicity Assessment of Synthesized Quantum Dots for Enhanced Cell Imaging
RII Track-4:NSF:用于增强细胞成像的合成量子点的体外细胞毒性评估
- 批准号:
2327429 - 财政年份:2024
- 资助金额:
$ 63.5万 - 项目类别:
Standard Grant
Infra-Plas: Colloidal Quantum Dots for Short-Wave Infrared Plasmonic Lasers
Infra-Plas:用于短波红外等离子激光器的胶体量子点
- 批准号:
EP/Z000912/1 - 财政年份:2024
- 资助金额:
$ 63.5万 - 项目类别:
Fellowship
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
- 批准号:
EP/Z000556/1 - 财政年份:2024
- 资助金额:
$ 63.5万 - 项目类别:
Research Grant
Biomass-derived Carbon Dots Enable Flexible, On-Demand Hydrogen Delivery
生物质衍生的碳点实现灵活、按需的氢气输送
- 批准号:
DP230102192 - 财政年份:2023
- 资助金额:
$ 63.5万 - 项目类别:
Discovery Projects
High color purity and multicolor luminescence based on precise synthesis and electronic structure design of multinary quantum dots
基于多元量子点的精确合成和电子结构设计的高色纯度和多色发光
- 批准号:
23H01786 - 财政年份:2023
- 资助金额:
$ 63.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structure-Optoelectronic Property Relationships in Homogeneous and Heterogeneous/Gradient Alloyed Colloidal I-(II)-III-VI Quantum Dots
均质和异质/梯度合金胶体 I-(II)-III-VI 量子点的结构-光电性质关系
- 批准号:
2304949 - 财政年份:2023
- 资助金额:
$ 63.5万 - 项目类别:
Standard Grant
NSF-NSERC: Building a two-qubit controlled phase gate using laterally coupled semiconductor quantum dots
NSF-NSERC:使用横向耦合半导体量子点构建两个量子位控制的相位门
- 批准号:
2317047 - 财政年份:2023
- 资助金额:
$ 63.5万 - 项目类别:
Standard Grant