Separability and logic in geometric group theory
几何群论中的可分离性和逻辑
基本信息
- 批准号:0906276
- 负责人:
- 金额:$ 9.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0906276Principal Investigator: Henry WiltonThis award is funded under the American Recovery and ReinvestmentAct of 2009 (Public Law 111-5).The principal investigator will pursue several lines of researchmotivated by three deep open questions in the theory ofword-hyperbolic groups. (1) Is every hyperbolic group residuallyfinite? If so, then in fact word-hyperbolic groups satisfy muchstronger separability properties. The PI intends to investigatethese separability properties for known examples ofword-hyperbolic groups and related groups, including 3-manifoldgroups and relatively hyperbolic groups. (2) Is the elementarytheory of a torsion-free hyperbolic group decidable? Togetherwith Daniel Groves, the PI intends to give an affirmative answerby proving algorithmic versions of the results of Sela. (3) Doesevery word-hyperbolic group contain a surface subgroup? Little isknown about this famous question of Gromov, even for some verybasic examples of word-hyperbolic groups. The PI proposes to usevarious new techniques to find surface subgroups in examples ofword-hyperbolic groups, including doubles of free groups alongmaximal cyclic subgroups.A group is a collection of symmetries, for example the collectionof all translations of the Euclidean plane that preserve theinteger lattice. This group is generated by the translations ofone unit of length in the north, south, east, or west directions,in the sense that any element of the group can be obtained bycomposing copies of those four basic translations. Everyfinitely generated group carries a notion of distance betweenpairs of its elements, defined by counting the number ofgenerators that must be applied to carry one element of the groupto another. These projects concentrate on word-hyperbolicgroups, which have many of the properties of the hyperbolic planefrom non-Euclidean geometry and are known to be so common that arandomly selected finitely generated group is almost surelyword-hyperbolic. This award is jointly funded by the programs inTopology and Foundations.
奖项:dms -0906276首席研究员:Henry wilton该奖项由2009年美国复苏与再投资法案(公法111-5)资助。在双曲群理论中有三个深层次的开放问题,主要研究者将会进行几条研究路线。(1)是否每个双曲群都是残有限的?如果是这样,那么事实上词双曲群满足更强的可分性。PI打算研究已知的双曲群和相关群的这些可分离性,包括3-流形群和相对双曲群。(2)无扭双曲群的初等理论是可判定的吗?与丹尼尔·格罗夫斯(Daniel Groves)一起,PI打算通过证明Sela结果的算法版本来给出肯定的答案。(3)每个词双曲群是否都包含一个表面子群?关于格罗莫夫这个著名的问题,我们所知甚少,甚至对于一些非常基本的词双曲群的例子也是如此。本文提出了利用各种新技术在双曲群的例子中寻找曲面子群,包括自由群沿极大循环子群的双元。群是对称的集合,例如欧几里得平面的所有平移的集合,这些平移保持了整格。这个组是由北、南、东或西方向上的一个单位长度的翻译产生的,也就是说,这个组的任何元素都可以通过组合这四个基本翻译的副本来获得。每个有限生成的群都带有其元素对之间距离的概念,通过计算必须应用的生成器的数量来定义,以将群中的一个元素携带到另一个元素。这些项目集中在词双曲群上,它具有非欧几里得几何中双曲平面的许多特性,并且被认为是如此普遍,以至于随机选择的有限生成群几乎肯定是词双曲的。该奖项由拓扑学和基金会项目共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cameron Gordon其他文献
Effect of dung burial by the dung beetle Bubas bison on numbers and viability of Cryptosporidium oocysts in cattle dung.
粪甲虫布巴斯野牛埋粪对牛粪中隐孢子虫卵囊数量和活力的影响。
- DOI:
10.1016/j.exppara.2011.06.009 - 发表时间:
2011 - 期刊:
- 影响因子:2.1
- 作者:
U. Ryan;Rongchang Yang;Cameron Gordon;B. Doube - 通讯作者:
B. Doube
Harmonic Analysis and Partial Differential Equations
- DOI:
10.1007/978-3-031-24311-0 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Cameron Gordon - 通讯作者:
Cameron Gordon
Characterization of a putative Triticum aestivum abscisic acid receptor and its role in fungal pathogen resistance
- DOI:
- 发表时间:
2016-04 - 期刊:
- 影响因子:0
- 作者:
Cameron Gordon - 通讯作者:
Cameron Gordon
Cameron Gordon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cameron Gordon', 18)}}的其他基金
Graduate Student Topology and Geometry Conference
研究生拓扑与几何会议
- 批准号:
1361929 - 财政年份:2014
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
Conference on low-dimensional topology, knots, and orderable groups
低维拓扑、结和可有序群会议
- 批准号:
1305714 - 财政年份:2013
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
Dehn Surgery and Related Topics in 3-Dimensional Topology
Dehn 手术和 3 维拓扑中的相关主题
- 批准号:
1309021 - 财政年份:2013
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
3-Manifolds After Perelman; March 2006; Edinburgh, UK
3-佩雷尔曼之后的流形;
- 批准号:
0601251 - 财政年份:2006
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
3-dimensional manifolds and related topic
3 维流形及相关主题
- 批准号:
0305846 - 财政年份:2003
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
The Topology of Manifolds of Dimensions 3 and 4
3 维和 4 维流形的拓扑
- 批准号:
0229035 - 财政年份:2003
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
Spring Topology and Dynamics Conference 2002, at the University of Texas at Austin on March 21-23, 2002
2002 年春季拓扑与动力学会议,2002 年 3 月 21-23 日在德克萨斯大学奥斯汀分校举行
- 批准号:
0129227 - 财政年份:2002
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant
Low-dimensional Manifolds and Knot Theory
低维流形和纽结理论
- 批准号:
9971718 - 财政年份:1999
- 资助金额:
$ 9.63万 - 项目类别:
Continuing Grant
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Geometric group theory, topology, mathematical logic and algorithms
几何群论、拓扑、数理逻辑与算法
- 批准号:
RGPIN-2016-06154 - 财政年份:2021
- 资助金额:
$ 9.63万 - 项目类别:
Discovery Grants Program - Individual
Design and Characterization of Quantum Logic Gates in Photonic Circuits using Geometric Phase
使用几何相位的光子电路中的量子逻辑门的设计和表征
- 批准号:
552780-2020 - 财政年份:2020
- 资助金额:
$ 9.63万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Geometric group theory, topology, mathematical logic and algorithms
几何群论、拓扑、数理逻辑与算法
- 批准号:
RGPIN-2016-06154 - 财政年份:2020
- 资助金额:
$ 9.63万 - 项目类别:
Discovery Grants Program - Individual
Geometric group theory, topology, mathematical logic and algorithms
几何群论、拓扑、数理逻辑与算法
- 批准号:
RGPIN-2016-06154 - 财政年份:2019
- 资助金额:
$ 9.63万 - 项目类别:
Discovery Grants Program - Individual
Dynamically Corrected Nonadiabatic Geometric Quantum Logic Gates
动态校正非绝热几何量子逻辑门
- 批准号:
1915064 - 财政年份:2019
- 资助金额:
$ 9.63万 - 项目类别:
Continuing Grant
Geometric group theory, topology, mathematical logic and algorithms
几何群论、拓扑、数理逻辑与算法
- 批准号:
RGPIN-2016-06154 - 财政年份:2018
- 资助金额:
$ 9.63万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of Stone-duality for quasi-Polish spaces
准波兰空间的石对偶性理论与应用
- 批准号:
18K11166 - 财政年份:2018
- 资助金额:
$ 9.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric group theory, topology, mathematical logic and algorithms
几何群论、拓扑、数理逻辑与算法
- 批准号:
RGPIN-2016-06154 - 财政年份:2017
- 资助金额:
$ 9.63万 - 项目类别:
Discovery Grants Program - Individual
Geometric group theory, topology, mathematical logic and algorithms
几何群论、拓扑、数理逻辑与算法
- 批准号:
RGPIN-2016-06154 - 财政年份:2016
- 资助金额:
$ 9.63万 - 项目类别:
Discovery Grants Program - Individual
Automata in Geometric Groups, Combinatorics, and Logic
几何群、组合学和逻辑中的自动机
- 批准号:
1060351 - 财政年份:2010
- 资助金额:
$ 9.63万 - 项目类别:
Standard Grant