Automata in Geometric Groups, Combinatorics, and Logic
几何群、组合学和逻辑中的自动机
基本信息
- 批准号:1060351
- 负责人:
- 金额:$ 8.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project studies automatic structures, in particular as they interact with geometric group theory, combinatorics, and logic. Finite-state automata are Turing machines with fixed finite bounds on resource use. Continuing a tradition of studying that part of mathematics which can be performed effectively, the field of automatic structures explores mathematical objects which can be represented by automata. Questions about automatic structures may be grouped into two themes: developing structural characterizations and studying algorithmic consequences of such characterizations. Dr. Minnes has worked in both of these areas, including proving both positive and negative results about the existence of such characterizations. Through this NSF grant, she will work towards answering these guiding questions in the context of less understood classes of structures. For example, the fundamental groups associated with certain manifolds have intimate connections with automata and some sequences arising in symbolic dynamics and combinatorics may be seen as generated by automata. The tools developed by the automatic structures community may lead to a better structural understanding of these objects. In parallel, Dr. Minnes seeks to develop the area of automatic model theory. Much work has been done in understanding how the standard results of model theory change when restricted to the framework of computable or polynomial-time objects. Preliminary work shows interesting analogies in the automatic structures world and suggests the promise of fruitful results. With the increasing reliance of the modern world on computerized and networked systems, the theoretical underpinnings of computational feasibility have gained more immediate relevance. Starting in the 1950s, the Turing machine, an idealized model of a computer with no bounds on memory use or computation time, led to astonishing and foundational insight into what problems can or cannot be solved by any algorithm. This NSF project focusses on a different model for the computer, the finite automaton, which more closely captures online computation and resource bounds. Dr. Minnes will study questions which relate finite automata both to traditional topics of mathematical logic and to new interactions with other fields of mathematics and computer science.
这个项目研究自动结构,特别是当它们与几何群论、组合学和逻辑相互作用时。有限状态自动机是在资源使用上具有固定有限界限的图灵机。延续了研究可以有效执行的数学部分的传统,自动结构领域探索可以由自动机表示的数学对象。关于自动结构的问题可以分为两个主题:发展结构表征和研究这种表征的算法结果。明内斯博士在这两个领域都做了工作,包括证明了此类特征存在的积极和消极结果。通过NSF的这笔拨款,她将致力于在较少了解的结构类别的背景下回答这些指导性问题。例如,与某些流形相关的基本群与自动机有着密切的联系,而符号动力学和组合学中出现的一些序列可能被视为由自动机生成。自动结构社区开发的工具可能会导致对这些对象更好的结构理解。与此同时,明尼斯博士试图发展自动模型理论领域。当模型理论的标准结果被限制在可计算或多项式时间对象的框架内时,人们已经做了很多工作来理解模型理论的标准结果是如何变化的。初步工作显示了自动结构世界中有趣的类比,并暗示了取得丰硕成果的前景。随着现代世界对计算机化和网络化系统的日益依赖,计算可行性的理论基础获得了更直接的相关性。从20世纪50年代开始,图灵机--一种没有内存使用或计算时间限制的理想化计算机模型--导致了人们对任何算法都能解决或不能解决什么问题的惊人而基础性的洞察。NSF的这个项目专注于计算机的另一种模型--有限自动机,它更接近于在线计算和资源限制。Minnes博士将研究与有限自动机有关的问题,这些问题既与数理逻辑的传统主题有关,也与数学和计算机科学的其他领域的新交互有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mia Minnes其他文献
Can Nudges Reduce Student Cheating?
助推可以减少学生作弊吗?
- DOI:
10.1080/00091383.2022.2078157 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
T. B. Gallant;Steven Brownstone;Mia Minnes - 通讯作者:
Mia Minnes
Taking the Next Course: Barriers and Facilitators Reported by Computer Science Majors
参加下一门课程:计算机科学专业报告的障碍和促进因素
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Amari N. Lewis;Mia Minnes;Kristen Vaccaro;Joe Gibbs Politz - 通讯作者:
Joe Gibbs Politz
Gender Differences in Students' Behaviors in CS Classes throughout the CS Major
整个计算机科学专业学生在计算机课程中行为的性别差异
- DOI:
10.1145/3017680.3017771 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Christine Alvarado;Yingjun Cao;Mia Minnes - 通讯作者:
Mia Minnes
Lightweight Techniques to Support Students in Large Classes
支持大班学生的轻量级技术
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mia Minnes;Christine Alvarado;Leo Porter - 通讯作者:
Leo Porter
Podcast Highlights: Targeted Educational Videos From Repurposed Lecture-capture Footage
播客亮点:来自重新调整用途的讲座捕获片段的有针对性的教育视频
- DOI:
10.1145/3287324.3287465 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Mia Minnes;Christine Alvarado;Max Geislinger;Joyce Fang - 通讯作者:
Joyce Fang
Mia Minnes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mia Minnes', 18)}}的其他基金
The efficacy of a computing-concepts video library for students and peer tutors in multidisciplinary contexts
计算概念视频库在多学科背景下对学生和同伴导师的功效
- 批准号:
2337253 - 财政年份:2024
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
BPC-DP: Inclusive longitudinal peer mentoring for community building and retention
BPC-DP:用于社区建设和保留的包容性纵向同伴指导
- 批准号:
2137928 - 财政年份:2021
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
Automata in Geometric Groups, Combinatorics, and Logic
几何群、组合学和逻辑中的自动机
- 批准号:
0901005 - 财政年份:2009
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
- 批准号:
22K13904 - 财政年份:2023
- 资助金额:
$ 8.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups
无限群、幺半群和逆半群的算法、拓扑和几何方面
- 批准号:
EP/V032003/1 - 财政年份:2022
- 资助金额:
$ 8.24万 - 项目类别:
Fellowship
Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
- 批准号:
RGPIN-2020-05316 - 财政年份:2022
- 资助金额:
$ 8.24万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
- 批准号:
RGPIN-2018-04615 - 财政年份:2022
- 资助金额:
$ 8.24万 - 项目类别:
Discovery Grants Program - Individual
Geometric quantum representations of discrete groups and their extension to higher category
离散群的几何量子表示及其向更高类别的扩展
- 批准号:
21H00986 - 财政年份:2021
- 资助金额:
$ 8.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
- 批准号:
RGPIN-2018-04615 - 财政年份:2021
- 资助金额:
$ 8.24万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
- 批准号:
RGPIN-2016-05215 - 财政年份:2021
- 资助金额:
$ 8.24万 - 项目类别:
Discovery Grants Program - Individual
Geometric Methods in the Local Langlands Correspondance for p-adic Groups.
p-adic 群的局部 Langlands 对应中的几何方法。
- 批准号:
RGPIN-2020-05316 - 财政年份:2021
- 资助金额:
$ 8.24万 - 项目类别:
Discovery Grants Program - Individual
Complex geometric structures and their moduli on Lie groups and homogeneous spaces
李群和齐次空间上的复杂几何结构及其模
- 批准号:
21K03248 - 财政年份:2021
- 资助金额:
$ 8.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial, geometric and probabilistic properties of groups
群的组合、几何和概率属性
- 批准号:
2611134 - 财政年份:2021
- 资助金额:
$ 8.24万 - 项目类别:
Studentship