Dehn Surgery and Related Topics in 3-Dimensional Topology
Dehn 手术和 3 维拓扑中的相关主题
基本信息
- 批准号:1309021
- 负责人:
- 金额:$ 14.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI will investigate various problems in three-dimensional topology. Specific topics that will be addressed are: (1) Exceptional Dehn Filling, (2) Bridge Number, Heegaard Genus and Dehn Surgery, and (3) L-Spaces and Left-Orderability. The context of (1) is the desire to classify all hyperbolic three-manifolds with two non-hyperbolic Dehn fillings; the present emphasis will be on the case where one of the fillings is Seifert fibered and the distance between the fillings is at least 5. Project (2) will consider manifolds obtained by Dehn surgery on knots in the three-sphere, the aim being to find upper bounds on the Heegaard genus of the manifold and the bridge number of the dual knot. The focus of (3) is the conjecture that a prime rational homology three-sphere is an L-space if and only of its fundamental group is not left-orderable.Three-dimensional topology is the study of the large-scale structure of three-manifolds, abstract spaces that are locally like the ordinary space in which we live. As a result of Perelman's proof of the Geometrization Conjecture about ten years ago, we now have a very good picture of the qualitative nature of such spaces. Nevertheless, three-dimensional topology is extremely rich, with many different kinds of mathematics playing a role, and the proposed research will seek to further our understanding of various aspects of the subject. Specifically, (1) will study when the geometry of a three-manifold degenerates on having a certain simple space attached to it, (2) is part of the exploration of the fundamental relationship between three-manifolds and knots, and (3) will investigate a mysterious connection that appears to exist between two very different aspects of three-dimensional topology, one analytical, the other algebraic.
PI将研究三维拓扑中的各种问题。将涉及的具体主题是:(1)异常Dehn填充,(2)桥数,Heegaard属和Dehn手术,(3)L-空间和左可序性。(1)的背景是希望对所有具有两个非双曲Dehn填充的双曲三流形进行分类;目前的重点将放在其中一个填充是塞弗特纤维且填充之间的距离至少为5的情况上。项目(2)将考虑通过Dehn手术在三球中的结上获得的流形,目的是找到流形的Heegaard亏格和对偶结的桥数的上界。(3)的重点是猜想一个素有理同调三球面是一个L-空间当且仅当它的基本群不是左序的。三维拓扑学是研究三维流形的大尺度结构的,三维流形是局部类似于我们所生活的普通空间的抽象空间。由于佩雷尔曼的证明的几何化猜想约十年前,我们现在有一个很好的图片定性性质的空间。尽管如此,三维拓扑学是非常丰富的,许多不同种类的数学发挥了作用,拟议的研究将寻求进一步我们对该主题的各个方面的理解。具体地说,(1)将研究当一个三维流形的几何在有一个特定的简单空间连接到它时退化,(2)是探索三维流形和结点之间的基本关系的一部分,(3)将研究一种神秘的联系,这种联系似乎存在于三维拓扑的两个非常不同的方面之间,一个是解析的,另一个是代数的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cameron Gordon其他文献
Effect of dung burial by the dung beetle Bubas bison on numbers and viability of Cryptosporidium oocysts in cattle dung.
粪甲虫布巴斯野牛埋粪对牛粪中隐孢子虫卵囊数量和活力的影响。
- DOI:
10.1016/j.exppara.2011.06.009 - 发表时间:
2011 - 期刊:
- 影响因子:2.1
- 作者:
U. Ryan;Rongchang Yang;Cameron Gordon;B. Doube - 通讯作者:
B. Doube
Harmonic Analysis and Partial Differential Equations
- DOI:
10.1007/978-3-031-24311-0 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Cameron Gordon - 通讯作者:
Cameron Gordon
Characterization of a putative Triticum aestivum abscisic acid receptor and its role in fungal pathogen resistance
- DOI:
- 发表时间:
2016-04 - 期刊:
- 影响因子:0
- 作者:
Cameron Gordon - 通讯作者:
Cameron Gordon
Cameron Gordon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cameron Gordon', 18)}}的其他基金
Characters in Low-Dimensional Topology
低维拓扑中的特征
- 批准号:
1830889 - 财政年份:2018
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
Graduate Student Topology and Geometry Conference
研究生拓扑与几何会议
- 批准号:
1361929 - 财政年份:2014
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
Conference on low-dimensional topology, knots, and orderable groups
低维拓扑、结和可有序群会议
- 批准号:
1305714 - 财政年份:2013
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
Separability and logic in geometric group theory
几何群论中的可分离性和逻辑
- 批准号:
0906276 - 财政年份:2009
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
3-Manifolds After Perelman; March 2006; Edinburgh, UK
3-佩雷尔曼之后的流形;
- 批准号:
0601251 - 财政年份:2006
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
3-dimensional manifolds and related topic
3 维流形及相关主题
- 批准号:
0305846 - 财政年份:2003
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
The Topology of Manifolds of Dimensions 3 and 4
3 维和 4 维流形的拓扑
- 批准号:
0229035 - 财政年份:2003
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
Spring Topology and Dynamics Conference 2002, at the University of Texas at Austin on March 21-23, 2002
2002 年春季拓扑与动力学会议,2002 年 3 月 21-23 日在德克萨斯大学奥斯汀分校举行
- 批准号:
0129227 - 财政年份:2002
- 资助金额:
$ 14.52万 - 项目类别:
Standard Grant
Low-dimensional Manifolds and Knot Theory
低维流形和纽结理论
- 批准号:
9971718 - 财政年份:1999
- 资助金额:
$ 14.52万 - 项目类别:
Continuing Grant
相似海外基金
Development of treatments for post traumatic stress disorder related to surgery and intensive care.
开发与手术和重症监护相关的创伤后应激障碍的治疗方法。
- 批准号:
23K08417 - 财政年份:2023
- 资助金额:
$ 14.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Gut microbiota-related mechanisms that impact colorectal cancer risk after bariatric surgery
影响减肥手术后结直肠癌风险的肠道微生物相关机制
- 批准号:
10733566 - 财政年份:2023
- 资助金额:
$ 14.52万 - 项目类别:
Using Informatics to Evaluate and Predict Cataract Surgery Impact on Alzheimer's Disease and Related Dementias and Mild Cognitive Impairment Outcomes
利用信息学评估和预测白内障手术对阿尔茨海默病和相关痴呆症以及轻度认知障碍结果的影响
- 批准号:
10688255 - 财政年份:2022
- 资助金额:
$ 14.52万 - 项目类别:
Preventing opioid-related harms after surgery using alternative pain management strategies
使用替代疼痛管理策略预防手术后与阿片类药物相关的伤害
- 批准号:
475814 - 财政年份:2022
- 资助金额:
$ 14.52万 - 项目类别:
Studentship Programs
Using Informatics to Evaluate and Predict Cataract Surgery Impact on Alzheimer's Disease and Related Dementias and Mild Cognitive Impairment Outcomes
利用信息学评估和预测白内障手术对阿尔茨海默病和相关痴呆症以及轻度认知障碍结果的影响
- 批准号:
10525214 - 财政年份:2022
- 资助金额:
$ 14.52万 - 项目类别:
Predicting long-term cognitive outcomes and Alzheimer’s disease and related dementias after major noncardiac surgery for older adults
预测老年人重大非心脏手术后的长期认知结果以及阿尔茨海默病和相关痴呆症
- 批准号:
10526208 - 财政年份:2022
- 资助金额:
$ 14.52万 - 项目类别:
Postoperative Telehealth Mindfulness Intervention to Improve Pain-related Outcomes and Reduce Opioid Use after Lumbar Spine Surgery
术后远程医疗正念干预可改善腰椎手术后疼痛相关的结果并减少阿片类药物的使用
- 批准号:
10462694 - 财政年份:2021
- 资助金额:
$ 14.52万 - 项目类别:
Predictors of catheter-related bladder discomfort after surgery: A literature review
术后导管相关膀胱不适的预测因素:文献综述
- 批准号:
21K21204 - 财政年份:2021
- 资助金额:
$ 14.52万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Postoperative Telehealth Mindfulness Intervention to Improve Pain-related Outcomes and Reduce Opioid Use after Lumbar Spine Surgery
术后远程医疗正念干预可改善腰椎手术后疼痛相关的结果并减少阿片类药物的使用
- 批准号:
10283807 - 财政年份:2021
- 资助金额:
$ 14.52万 - 项目类别:
Postoperative Telehealth Mindfulness Intervention to Improve Pain-related Outcomes and Reduce Opioid Use after Lumbar Spine Surgery
术后远程医疗正念干预可改善腰椎手术后疼痛相关的结果并减少阿片类药物的使用
- 批准号:
10700889 - 财政年份:2021
- 资助金额:
$ 14.52万 - 项目类别: