Association Analysis of Multivariate Competing Risks Data
多变量竞争风险数据的关联分析
基本信息
- 批准号:0906449
- 负责人:
- 金额:$ 19.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). In this proposal, the investigator describes three projects on association analysis of multivariate competing risks data which arise frequently in genetic family studies, demography and other areas. Often one is interested in familial association of the onset time of a certain event, with the presence of competing events which may dependently censor the occurrence of the target event. The usual association methods for multivariate survival data assuming the censoring by competing events independent of the target event may produce biased results. In addition, the marginal distributions of the event of interest are not identifiable. Hence the proposed association analysis for multivariate competing risks data focuses on two important quantities in competing risks literature: cause-specific hazard (CSH) and cumulative incidence functions (CIFs). The investigator develops a series of association analyses of multivariate competing risks data which account for the dependence censoring by competing events appropriately. The first project is related to two equivalent association measures of multivariate competing risks data which are CSH ratios and estimated nonparametrically without smoothing. In the second project, the investigator expands the application of frailty models to association analysis of multivariate competing risks data through an improper random variable and expresses the bivariate CIF in terms of its marginals and an association parameter. To incorporate covariates, in the third project, the investigator develops parametric regression models to investigate covariate effects on marginal CIFs and the indirect effects of covariates on the association analysis. These association methods cover many existing approaches for bivariate data as special cases. The proposal concentrates on modeling familial association in a target event with the presence of competing events where the standard methods may produce biased results. For example, in a large dementia study, family clustering in dementia onset is of interest where the competing event death may preclude the occurrence of dementia. The application of this research to the dementia and other studies in health and medicine is expected to generate novel insights on the association in a target event among members of a cluster, which help individuals and practitioners perceive the familial risks more accurately. The enhanced understanding may lead to better prevention and intervention in the target population who are at elevated risks. The methods can be used in many other applications such as demographic studies of human mortality, extremes in financial assets and returns, genetic evaluation of sires for longevity of dairy cows and annuity valuation with dependent mortality in insurance.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。 在这个建议中,研究者描述了三个项目的关联分析的多变量竞争风险的数据,经常出现在遗传家族研究,人口学和其他领域。 通常人们感兴趣的是某个事件的发生时间与竞争事件的存在的家族关联,竞争事件可能依赖于目标事件的发生。 多变量生存数据的常用关联方法假设独立于目标事件的竞争事件删失,可能会产生有偏倚的结果。 此外,关注事件的边际分布不可识别。 因此,多变量竞争风险数据的关联分析主要集中在竞争风险文献中的两个重要量:原因特异性危害(CSH)和累积发生率函数(CIF)。 研究者开发了一系列多变量竞争风险数据的关联分析,这些数据适当地解释了竞争事件的依赖性删失。 第一个项目是关于多变量竞争风险数据的两个等价的关联测度,它们是CSH比,并且在没有平滑的情况下进行非参数估计。 在第二个项目中,研究者通过一个不适当的随机变量将脆弱性模型的应用扩展到多变量竞争风险数据的关联分析中,并以其边缘和关联参数表示双变量CIF。 为了纳入协变量,在第三个项目中,研究者开发了参数回归模型,以研究协变量对边际CIF的影响以及协变量对关联分析的间接影响。 这些关联方法涵盖了许多现有的双变量数据的特殊情况下的方法。 该提案集中在建模的目标事件与竞争事件的存在下,标准的方法可能会产生偏见的结果的家族关联。 例如,在一项大型痴呆症研究中,痴呆症发作的家庭聚集性是令人感兴趣的,其中竞争性事件死亡可能排除痴呆症的发生。 这项研究在痴呆症和其他健康和医学研究中的应用有望产生对集群成员之间目标事件关联的新见解,这有助于个人和从业者更准确地感知家族风险。 提高认识可能会导致更好的预防和干预的目标人群谁是高风险。该方法可用于许多其他应用,如人口研究的人类死亡率,极端的金融资产和回报,遗传评估的公牛寿命的奶牛和年金估值与依赖死亡率的保险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Cheng其他文献
Precision enhancement of three-dimensional displacement tracing for nano-fabrication based on low coherence interferometry
基于低相干干涉技术的纳米加工三维位移追踪精度提升
- DOI:
10.1364/oe.27.028324 - 发表时间:
2019 - 期刊:
- 影响因子:3.8
- 作者:
Yu Cheng;Xiangchao Zhang;He Yuan;Wei Wang;Min Xu - 通讯作者:
Min Xu
Anti-inflammatory effect of Yu-Ping-Feng-San via TGF-β1 signaling suppression in rat model of COPD
玉屏风散通过抑制 TGF-β1 信号传导抑制 COPD 大鼠模型的抗炎作用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Zhong-Shan Yang;Jin-Yuan Yan;Ni-Ping Han;Wei Zhou;Yu Cheng;Xiao-Mei Zhang;Ning Li;Jia-Li Yuan - 通讯作者:
Jia-Li Yuan
Preparation and catalytic performance of N-[(2-Hydroxy-3-trimethylammonium) propyl] chitosan chloride /Na2SiO3 polymer-based catalyst for biodiesel production
N-[(2-羟基-3-三甲基铵)丙基]氯化壳聚糖/Na2SiO3聚合物基生物柴油催化剂的制备及催化性能
- DOI:
10.1016/j.renene.2015.11.036 - 发表时间:
2016-04 - 期刊:
- 影响因子:8.7
- 作者:
BenQiao He;YiXuan Shao;JianXin Li;Yu Cheng - 通讯作者:
Yu Cheng
Object tracking in the complex environment based on SIFT
基于SIFT的复杂环境目标跟踪
- DOI:
10.1109/iccsn.2011.6014410 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yu Cheng;Liu Yu;Zhang Jing;Yun Ting - 通讯作者:
Yun Ting
A Neutrophil-Inspired Supramolecular Nanogel for Magnetocaloric-Enzymatic Tandem Therapy
用于磁热酶串联疗法的中性粒细胞启发的超分子纳米凝胶
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Qi Zhang;Jiaojiao Wu;Jingjing Wang;Xia Wang;Chu Wu;Mengwei Chen;Qing Wu;Maciej S. Lesniak;Yongli Mi;Yu Cheng;Qigang Wang - 通讯作者:
Qigang Wang
Yu Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Cheng', 18)}}的其他基金
AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
- 批准号:
2122628 - 财政年份:2022
- 资助金额:
$ 19.64万 - 项目类别:
Standard Grant
AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
- 批准号:
2307106 - 财政年份:2022
- 资助金额:
$ 19.64万 - 项目类别:
Standard Grant
CNS Core: Small: Application-Oriented Scheduling for Optimizing Information Freshness in Wireless Networks
CNS 核心:小型:面向应用的调度,用于优化无线网络中的信息新鲜度
- 批准号:
2008092 - 财政年份:2020
- 资助金额:
$ 19.64万 - 项目类别:
Standard Grant
Dynamic Multivariate Normative Comparison and Risk Screening for Alzheimer's Disease Progression
阿尔茨海默病进展的动态多变量规范比较和风险筛查
- 批准号:
1916001 - 财政年份:2019
- 资助金额:
$ 19.64万 - 项目类别:
Standard Grant
NeTS: Small: Machine Learning Meets Wireless Network Optimization: Exploring the Latent Knowledge
NeTS:小型:机器学习遇见无线网络优化:探索潜在知识
- 批准号:
1816908 - 财政年份:2018
- 资助金额:
$ 19.64万 - 项目类别:
Standard Grant
A Fundamental Study on Energy Efficient Wireless Communication Networks: Modeling, Algorithms, and Applications
节能无线通信网络的基础研究:建模、算法和应用
- 批准号:
1610874 - 财政年份:2016
- 资助金额:
$ 19.64万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2016 IEEE Global Communications Conference (IEEE GLOBECOM)
2016 年 IEEE 全球通信会议 (IEEE GLOBECOM) 的 NSF 学生旅费补助
- 批准号:
1643335 - 财政年份:2016
- 资助金额:
$ 19.64万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Towards Reliable, Energy-Efficient, and Secure Vehicular Networks
NetS:小型:协作研究:迈向可靠、节能和安全的车辆网络
- 批准号:
1320736 - 财政年份:2014
- 资助金额:
$ 19.64万 - 项目类别:
Standard Grant
Association, Regression and Diagnostic Accuracy Analyses of Competing Risks Data
竞争风险数据的关联、回归和诊断准确性分析
- 批准号:
1207711 - 财政年份:2012
- 资助金额:
$ 19.64万 - 项目类别:
Standard Grant
TC: Small: Real-Time Intrusion Detection for VoIP over IEEE 802.11 Based Wireless Networks: An Analytical Approach for Guaranteed Performance
TC:小型:基于 IEEE 802.11 的无线网络的 VoIP 实时入侵检测:保证性能的分析方法
- 批准号:
1117687 - 财政年份:2012
- 资助金额:
$ 19.64万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
- 批准号:
23K03219 - 财政年份:2023
- 资助金额:
$ 19.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
- 批准号:
23K14813 - 财政年份:2023
- 资助金额:
$ 19.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Simplification of solution matrices in multivariate data analysis by integrating of sparseness and simple structure
通过稀疏性和简单结构的结合简化多元数据分析中的解矩阵
- 批准号:
23K16854 - 财政年份:2023
- 资助金额:
$ 19.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multivariate analysis methods for optical imaging measurements of macroscopic inhomogeneous structures
宏观非均匀结构光学成像测量的多元分析方法
- 批准号:
23K03283 - 财政年份:2023
- 资助金额:
$ 19.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Copula-Based Methods for Multivariate Survival Analysis
基于 Copula 的多元生存分析方法
- 批准号:
2210481 - 财政年份:2022
- 资助金额:
$ 19.64万 - 项目类别:
Standard Grant
Exploring the Impacts of Gas Accretion and Environment via Multivariate (Spatial) Analysis of Metals, Star formation, and Morphology of Nearby Subaru HSC Galaxies
通过对附近 Subaru HSC 星系的金属、恒星形成和形态进行多元(空间)分析,探索气体吸积和环境的影响
- 批准号:
22K14072 - 财政年份:2022
- 资助金额:
$ 19.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Modeling and Forecasting Multivariate and Nonlinear Time Series, and Analysis of Complex Survey Data
多元和非线性时间序列的建模和预测以及复杂调查数据的分析
- 批准号:
RGPIN-2020-05016 - 财政年份:2022
- 资助金额:
$ 19.64万 - 项目类别:
Discovery Grants Program - Individual
Robust framework for cluster analysis of multivariate discrete data
多元离散数据聚类分析的稳健框架
- 批准号:
573564-2022 - 财政年份:2022
- 资助金额:
$ 19.64万 - 项目类别:
University Undergraduate Student Research Awards
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2022
- 资助金额:
$ 19.64万 - 项目类别:
Discovery Grants Program - Individual
Statistical methods of multivariate analysis for large and complex data
海量复杂数据的多元分析统计方法
- 批准号:
RGPIN-2016-05880 - 财政年份:2022
- 资助金额:
$ 19.64万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




