Collaborative Research: Line-Active Amphiphiles for Nanostructure Stability

合作研究:用于纳米结构稳定性的线活性两亲物

基本信息

  • 批准号:
    0906727
  • 负责人:
  • 金额:
    $ 38.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARYThe proposed research will develop a fundamental understanding of how line-active molecules (called linactants in the proposal) can be used to modify the line tension of nano- and meso-scale features within molecular monolayers. The ability to control line tension will be necessary to stabilize objects created using next-generation nanolithographic methods; furthermore, development and use of linactants will permit the creation of self-organized 2D features that are analogous to 3D micelles or microemulsions. The proposed experimental strategy will rely on molecular aggregation within two- and three-component monomolecular films prepared by Langmuir-Blodgett (LB) deposition and related self-assembly methods. Key components include the rational design and synthesis of line-active molecules that play roles in two-dimensions (2D) that are analogous to those of amphiphilic surfactant molecules in three-dimensional (3D) micelles, bilayers, and microemulsions. In the same manner in which a 3D surfactant possesses hydrophobic and hydrophilic regions, these linactant molecules will possess two dissimilar hydrophobic molecular moieties (either distinct tails or blocks within a single tail); each moiety is designed to interact favorably with one of the respective components of a phase-separated two-component monolayer film. Previous work by this collaborative team focused on linactants having one hydrocarbon tail or block and one fluorinated tail or block. These compounds successfully reduced the line tension between hydrocarbon- and fluorocarbon-rich monolayer phases; distinctive 2D self-assembly of the linactants into nanometer-scale clusters analogous to micelles was also observed. The specific objectives of this project are (1) to obtain a clearer understanding of the molecular mechanisms leading to linactant behavior in fluorocarbon/hydrocarbon mixed monolayer systems, and (2) to generalize the linactant phenomenon beyond fluorocarbon/hydrocarbon systems by designing and synthesizing linactants for use in alternative binary monolayer mixtures, including hydrocarbon/silicone, saturated/unsaturated hydrocarbons, and cholesterol/lipid.NON-TECHNICAL SUMMARYThe fundamental scientific research outlined in this proposal will lead to advances in the technologically important and emerging field of nanotechnology. As devices and materials are made smaller and smaller, the influence of surfaces and interfaces becomes increasingly important. In particular, the influence of surface tension leads to instabilities that can instigate the degradation of nanoscale patterns and structural features. For this reason, the fabrication of functional nanoscale structures requires the addition of molecular stabilizers -- molecules that partition at surfaces and reduce the surface tension between edges and domain boundaries. The science behind such stabilizers is reasonably well understood for traditional three-dimensional materials, such as micelles, emulsions, and even nanoparticles. However, no such science exists for molecules that are needed to stabilize two-dimensional nanostructures (i.e., nanoscale patterns fabricated on surfaces). The stability of such surface nanopatterns is required for future applications in molecular electronics, cataysis, biosensors, and biomaterials. This collaborative research project, which encompasses two distinct disciplines at two separate universities, will seek to broaden the participation of both women and minorities in science and education. All participants will be encouraged to join their local professional societies and to attend local and national meetings to advance our dissemination efforts. Also, through their participation in a variety of educational and outreach programs (e.g., REUs, RETs, NUE, GAANN, CU-Discovery Learning Center, Materials Science from CU K-12 outreach, Colorado High School Honors Institute, Houston Louis Stokes Alliance for Minority Participation, UH Latino Outreach, and Welch Summer Scholars), the researchers will continue to share this project with students, teachers, and members of the community at large. Furthermore, the proposed effort to link fundamental scientific discovery with technological and societal impact offers an ideal platform from which to communicate the benefits of research to the public.
技术总结拟议的研究将对如何使用线活性分子(在提案中称为线性剂)来改变分子单分子层中纳米和介观特征的线张力有一个基本的理解。控制线张力的能力对于稳定使用下一代纳米光刻方法创建的对象将是必要的;此外,连接剂的开发和使用将允许创建类似于3D胶束或微乳液的自组织2D特征。所提出的实验策略将依赖于通过Langmuir-Blodgett(LB)沉积和相关的自组装方法制备的双组分单分子膜和三组分单分子膜中的分子聚集。关键组成部分包括合理设计和合成在二维(2D)中发挥作用的线活性分子,这些分子类似于在三维(3D)胶束、双层和微乳液中的两亲性表面活性剂分子。与3D表面活性剂具有疏水和亲水区域的方式相同,这些乳化剂分子将拥有两个不同的疏水分子部分(要么是不同的尾部,要么是单个尾部内的块);每个部分都被设计成与相分离的双组分单分子膜的各个组分中的一个有利地相互作用。这个合作团队之前的工作集中在具有一个碳氢化合物尾部或嵌段和一个氟化尾部或嵌段的链段。这些化合物成功地降低了富含碳氢化合物和碳氟化合物的单层相之间的线张力;还观察到这些连接物独特的2D自组装成类似胶束的纳米级簇。这个项目的具体目标是(1)更清楚地了解导致氟碳/烃混合单层体系中直线行为的分子机制,以及(2)通过设计和合成用于替代二元单层混合物的直线现象,将直线现象推广到氟碳/烃体系,包括烃/硅、饱和/不饱和碳氢化合物和胆固醇/脂。随着器件和材料变得越来越小,表面和界面的影响变得越来越重要。特别是,表面张力的影响会导致不稳定性,这可能会引发纳米级图案和结构特征的退化。出于这个原因,功能纳米级结构的制造需要添加分子稳定剂--分子在表面进行分割,降低边缘和区域边界之间的表面张力。这类稳定剂背后的科学对于传统的三维材料,如胶束、乳液,甚至纳米颗粒,都有相当好的理解。然而,对于稳定二维纳米结构(即表面制造的纳米级图案)所需的分子,还没有这样的科学。这种表面纳米粒子的稳定性是未来在分子电子学、催化、生物传感器和生物材料中应用的必要条件。这一合作研究项目包括两所不同大学的两个不同学科,将寻求扩大妇女和少数群体在科学和教育方面的参与。将鼓励所有参与者加入他们当地的专业协会,并参加地方和国家会议,以推动我们的宣传工作。此外,通过参与各种教育和外展计划(例如,REUS、RETS、NUE、GAANN、CU-Discovery学习中心、CU K-12外展的材料科学、科罗拉多高中荣誉学院、休斯顿路易斯·斯托克斯少数民族参与联盟、密歇根州立大学拉丁裔外展和韦尔奇夏季学者),研究人员将继续与学生、教师和广大社区成员分享这一项目。此外,拟议的将基础科学发现与技术和社会影响联系起来的努力提供了一个向公众传播研究成果的理想平台。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

T. Randall Lee其他文献

Heterogeneous reductions of (homohypostrophene)dialkylplatinum(II) complexes provide a useful system for the study of intermediate surface alkyls on platinum [1]
  • DOI:
    10.1007/bf00764838
  • 发表时间:
    1991-01-01
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    T. Randall Lee;George M. Whitesides
  • 通讯作者:
    George M. Whitesides
Gated electron transfer of cytochrome c6 at biomimetic interfaces: a time-resolved SERR study.
细胞色素 c6 在仿生界面的门控电子转移:时间分辨 SERR 研究。
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anja Kranich;Hendrik Naumann;F. P. Molina;H. Justin Moore;T. Randall Lee;Sophie Lecomte;M. A. De la Rosa;Peter Hildebrandt;D. Murgida
  • 通讯作者:
    D. Murgida
Wettabilities of Self-Assembled Monolayers Generated from CF3-Terminated Alkanethiols on Gold
CF3 封端的烷硫醇在金上生成的自组装单分子层的润湿性
  • DOI:
    10.1021/la980154g
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yasuhiro F. Miura;M. Takenaga;T. Koini;M. Graupe;N. Garg;Robert L. Graham,;T. Randall Lee
  • 通讯作者:
    T. Randall Lee
Model Glycol-Terminated Surfaces for Adhesion Resistance
模拟乙二醇端接表面的抗粘附性
  • DOI:
    10.1080/00218460500310762
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Béthencourt;David Barriet;Natalie M. Frangi;T. Randall Lee
  • 通讯作者:
    T. Randall Lee
Experimental and theoretical studies of the effect of mass on the dynamics of gas/organic-surface energy transfer.
质量对气体/有机表面能量转移动力学影响的实验和理论研究。
  • DOI:
    10.1063/1.2815327
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William A. Alexander;B. S. Day;H. Justin Moore;T. Randall Lee;John R. Morris;Diego Troya
  • 通讯作者:
    Diego Troya

T. Randall Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('T. Randall Lee', 18)}}的其他基金

Interfacial Control through Adsorbate Design Offers Fundamental Insights and Practical Utility
通过吸附物设计进行界面控制提供了基本见解和实用性
  • 批准号:
    2109174
  • 财政年份:
    2021
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Standard Grant
Stable Organic Interfaces Having Unnatural Compositions: Nanoscale Control of Heterogeneity
具有非自然成分的稳定有机界面:异质性的纳米级控制
  • 批准号:
    1710561
  • 财政年份:
    2017
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Continuing Grant
Stable But Conflicted Interfaces
稳定但冲突的接口
  • 批准号:
    1411265
  • 财政年份:
    2014
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Line-Active Amphiphiles for Nanostructure Stability
合作研究:用于纳米结构稳定性的线活性两亲物
  • 批准号:
    0447588
  • 财政年份:
    2005
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Continuing Grant
Wetting, Adhesion and Friction in Fluorinated Films
氟化薄膜中的润湿、粘附和摩擦
  • 批准号:
    9700662
  • 财政年份:
    1997
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Continuing Grant
New Versatile and Stable Artificial Enzymes
新型多功能且稳定的人工酶
  • 批准号:
    9625003
  • 财政年份:
    1996
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
  • 批准号:
    2328741
  • 财政年份:
    2023
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
  • 批准号:
    2328743
  • 财政年份:
    2023
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Back to the Future: Assimilating Paleo Thinning Rates and Grounding Line Positions to Constrain Future Antarctic Sea Level Contributions
合作研究:回到未来:同化古变薄率和接地线位置以限制未来南极海平面的贡献
  • 批准号:
    2303344
  • 财政年份:
    2023
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
  • 批准号:
    2328742
  • 财政年份:
    2023
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Back to the Future: Assimilating Paleo Thinning Rates and Grounding Line Positions to Constrain Future Antarctic Sea Level Contributions
合作研究:回到未来:同化古变薄率和接地线位置以限制未来南极海平面的贡献
  • 批准号:
    2303345
  • 财政年份:
    2023
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Standard Grant
Collaborative Research: RECODE: On-line Feedback Control of Human Mesenchymal Stem Cell Chondrogenesis
合作研究:RECODE:人类间充质干细胞软骨形成的在线反馈控制
  • 批准号:
    2225559
  • 财政年份:
    2022
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Standard Grant
Collaborative Research: RECODE: On-line Feedback Control of Human Mesenchymal Stem Cell Chondrogenesis
合作研究:RECODE:人类间充质干细胞软骨形成的在线反馈控制
  • 批准号:
    2225528
  • 财政年份:
    2022
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Standard Grant
International collaborative research on highly sensitive fiber optic sensor for early detection of dielectric breakdown signs in power line
用于早期检测电力线介质击穿迹象的高灵敏度光纤传感器的国际合作研究
  • 批准号:
    21KK0067
  • 财政年份:
    2021
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Collaborative Research: FW-HTF-P: Supporting future crisis line work through the inclusive design of worker-facing tools that empower self-management of wellbeing and performance
合作研究:FW-HTF-P:通过面向工人的工具的包容性设计来支持未来的危机热线工作,这些工具能够实现福祉和绩效的自我管理
  • 批准号:
    2128866
  • 财政年份:
    2021
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Absorption and Emission Line Probes of Galactic Winds with eBOSS
合作研究:利用 eBOSS 进行银河风的吸收和发射线探测
  • 批准号:
    2107725
  • 财政年份:
    2021
  • 资助金额:
    $ 38.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了