Nonparametric Curve Estimation in the Presence of Nuisance Functions
存在干扰函数时的非参数曲线估计
基本信息
- 批准号:0906790
- 负责人:
- 金额:$ 34.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal focuses on developing statistical methodology, theory and methods of adaptive nonparametric curve estimation in the presence of nuisance functions. It is motivated by biological and medical applications. The investigator studies four main classes of considered problems. Each is classified by how an estimator can match the performance of an oracle knowing underlying nuisance functions. They are: (a) Estimator can match oracle. An example is a regression problem with a smooth design density being nuisance function. (b) Estimator can match oracle if complementary observations are available. Examples are deconvolution and regression with measurement errors in predictors where complementary observations are needed to estimate distribution of measurement error. (c) Estimator cannot match oracle. An example is estimation of the density of regression error when a nuisance regression function is not sufficiently smooth. (d) A mixture of the above-formulated settings. It is proposed to develop a general theory of adaptive estimation for the aforementioned classes of statistical problems with particular applications to: missing, stratified and censored data, hidden components, mixed multivariate models involving continuous and nominal or ordinal categorical variables, and time series. Theoretical results are tested and applied to the analysis of ChIP-on-chip microarrays and ultra-fast fMRI.The primary focus of the research is to create adaptive statistical procedures which can work in the presence of nuisance functions. This research is motivated by and tested on well-understood applications in the statistical analysis of: (i) ChIP-on-chip microarrays used to find regulatory protein binding sites in a bacterial genome. Interactions between protein and DNA are fundamental to life. They facilitate and mediate gene expression, DNA replication and repair. The proposed statistical analysis of ChIP-on-chip microarrays points on exact location of protein-DNA binding sites. Because the statistical analysis does not require measuring of nuisance functions, it makes microarray experiments cheaper, faster and more accurate. (ii) Ultra-fast functional magnet resonance images, which help in understanding aging and brain diseases such as Alzheimer's and Parkinson's Diseases. Ultra-fast fMRI is an exciting new technology for studying brain functions with the temporal resolution of 50 milliseconds. This resolution sheds light on both neurons and physiological activities in the brain. Proposed statistical analysis, which is robust to nuisance functions, can denoise emodynamic responses, study cognitive functions like memory, speech and emotion, and create a map of physiological activities of the human brain.
本文的研究重点是在存在干扰函数的情况下,发展自适应非参数曲线估计的统计方法、理论和方法。它的动机是生物和医学应用。研究者主要研究四类被考虑的问题。每一个都是根据一个估计器如何匹配一个知道潜在的麻烦函数的oracle的性能来分类的。它们是:(a) Estimator可以匹配oracle。一个例子是一个回归问题,平滑设计密度是干扰函数。(b)如果有补充观测,估计器可以匹配oracle。例如,在需要补充观测来估计测量误差分布的预测器中,有测量误差的反卷积和回归。(c)估计器无法匹配oracle。一个例子是当干扰回归函数不够光滑时回归误差密度的估计。(d)上述环境的混合。建议为上述统计问题的特定应用开发一种自适应估计的一般理论:缺失,分层和删除数据,隐藏成分,涉及连续和名义或有序分类变量的混合多元模型,以及时间序列。理论结果被测试并应用于芯片芯片微阵列和超快速功能磁共振成像的分析。研究的主要焦点是创建自适应的统计程序,可以在妨害函数的存在下工作。本研究的动机和测试是在统计分析中得到充分理解的应用:(i)用于在细菌基因组中寻找调节蛋白结合位点的ChIP-on-chip芯片微阵列。蛋白质和DNA之间的相互作用是生命的基础。它们促进和介导基因表达、DNA复制和修复。提出的ChIP-on-chip芯片微阵列的统计分析指出了蛋白质- dna结合位点的确切位置。由于统计分析不需要测量干扰函数,这使得微阵列实验更便宜,更快,更准确。(ii)超快速功能性磁共振成像,有助于了解衰老和脑部疾病,如阿尔茨海默病和帕金森病。超高速功能磁共振成像是一项令人兴奋的研究大脑功能的新技术,其时间分辨率为50毫秒。这一分辨率揭示了大脑中的神经元和生理活动。提出的统计分析方法对滋扰函数具有鲁棒性,可以去噪情绪动力反应,研究记忆、语言和情感等认知功能,并绘制人类大脑的生理活动图。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sam Efromovich其他文献
On rate and sharp optimal estimation
- DOI:
10.1007/s004400050211 - 发表时间:
1999-02-01 - 期刊:
- 影响因子:1.600
- 作者:
Sam Efromovich - 通讯作者:
Sam Efromovich
Lower bound for estimation of Sobolev densities of order less <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><mstyle displaystyle="false"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>
- DOI:
10.1016/j.jspi.2008.10.017 - 发表时间:
2009-07-01 - 期刊:
- 影响因子:
- 作者:
Sam Efromovich - 通讯作者:
Sam Efromovich
A lower-bound oracle inequality for a blockwise-shrinkage estimate
- DOI:
10.1016/j.jspi.2005.10.006 - 发表时间:
2007-01-01 - 期刊:
- 影响因子:
- 作者:
Sam Efromovich - 通讯作者:
Sam Efromovich
Sharp Lower Bound for Regression with Measurement Errors and Its Implication for Ill-Posedness of Functional Regression
测量误差回归的急剧下界及其对函数回归不适定性的影响
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0.5
- 作者:
Sam Efromovich - 通讯作者:
Sam Efromovich
Analysis of blockwise shrinkage wavelet estimates via lower bounds for no-signal setting
- DOI:
10.1007/bf02530542 - 发表时间:
2004-06-01 - 期刊:
- 影响因子:0.600
- 作者:
Sam Efromovich - 通讯作者:
Sam Efromovich
Sam Efromovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sam Efromovich', 18)}}的其他基金
Nonparametric Curve Estimation in Presence of Missing Data
存在缺失数据时的非参数曲线估计
- 批准号:
1915845 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Topics in Nonparametric Statistics: Faster Minimax Rates, Large-p-Small-n Cross-Correlation Matrices, Survival Analysis
非参数统计主题:更快的极小极大速率、大 p 小 n 互相关矩阵、生存分析
- 批准号:
1513461 - 财政年份:2015
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Nonparametric Curve Estimation: Theory and Practice
非参数曲线估计:理论与实践
- 批准号:
0638468 - 财政年份:2006
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Theory and Applications of Sharp Nonparametric Estimation and Learning
尖锐非参数估计与学习的理论与应用
- 批准号:
0643684 - 财政年份:2006
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Nonparametric Curve Estimation: Theory and Practice
非参数曲线估计:理论与实践
- 批准号:
0604558 - 财政年份:2006
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Theory and Applications of Sharp Nonparametric Estimation and Learning
尖锐非参数估计与学习的理论与应用
- 批准号:
0243606 - 财政年份:2003
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Optimal Curve Estimation: from Asymptotic to Small Sample Sizes
最优曲线估计:从渐近到小样本量
- 批准号:
9971051 - 财政年份:1999
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Curve Estimation Involving Time Series
涉及时间序列的曲线估计
- 批准号:
9625412 - 财政年份:1996
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Adaptive estimation of nonparametric curves
数学科学:非参数曲线的自适应估计
- 批准号:
9123956 - 财政年份:1992
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
相似海外基金
Estimation of listener's emotion curve from acoustic parameters
从声学参数估计听者的情绪曲线
- 批准号:
21J13539 - 财政年份:2021
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Nonparametric Curve Estimation in Presence of Missing Data
存在缺失数据时的非参数曲线估计
- 批准号:
1915845 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Nonparametric estimation and forecasting of yield curve dynamics
收益率曲线动态的非参数估计和预测
- 批准号:
DE170100713 - 财政年份:2017
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Early Career Researcher Award
Development of a real-time response curve estimation of the canopy net photosynthetic rate to the CO2 supply rate in a ventilated greenhouse
开发通风温室冠层净光合速率对二氧化碳供应速率的实时响应曲线估计
- 批准号:
17K19306 - 财政年份:2017
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Algorithm of gross primary production estimation using light-response curve and canopy conductance index
利用光响应曲线和冠层电导指数估算总初级生产力的算法
- 批准号:
16K00514 - 财政年份:2016
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Multidimensional Curve Estimation for Diffusion MRI
合作研究:扩散 MRI 的多维曲线估计
- 批准号:
1443252 - 财政年份:2014
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
A damage estimation model applying a damage boundary curve and considering the purchasing behaviour of consumers
应用损害边界曲线并考虑消费者购买行为的损害估计模型
- 批准号:
26850160 - 财政年份:2014
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Collaborative Research: Multidimensional Curve Estimation for Diffusion MRI
合作研究:扩散 MRI 的多维曲线估计
- 批准号:
1208917 - 财政年份:2012
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Collaborative Research: Multidimensional Curve Estimation for Diffusion MRI
合作研究:扩散 MRI 的多维曲线估计
- 批准号:
1208238 - 财政年份:2012
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Statistical classification and curve estimation in some nonstandard cases
一些非标准情况下的统计分类和曲线估计
- 批准号:
203013-2007 - 财政年份:2011
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Grants Program - Individual