Nonparametric Curve Estimation in Presence of Missing Data

存在缺失数据时的非参数曲线估计

基本信息

  • 批准号:
    1915845
  • 负责人:
  • 金额:
    $ 19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The project focuses on statistical activities motivated by medical and engineering applications in the presence of missing data, a familiar and often inevitable complication in statistical analysis. The first main activity is motivated by the analysis of functional magnet resonance images of the human brain. The project will develop and test statistical procedures that allow doctors and bioengineers to take into account missing data with potential applications in understanding the neural plasticity and developing new methods for diagnosis and treatment of Alzheimer's and Parkinson's diseases. The second main activity is the statistical analysis of radiation and drug therapy of cancer cells and finding efficient treatments for prostate and breast cancers. The third main activity is to develop new statistical methods for time series analysis with environmental applications in wastewater treatment and reducing pollution. The project has the potential for impacts on environmental, actuarial, and cancer and brain studies. Graduate students will participate in the project, and obtained results will be disseminated through publications, presentation at conferences and the distribution of free R packages.The project focuses on several topics in nonparametric curve estimation in the presence of missing data. Firstly, missing may be destructive when based solely on the data no consistent estimation is possible, and then an exploratory sampling is needed to unlock information contained in missing data. The project will develop methodology, theory and methods of efficient (minimal cost) exploratory sampling that allows matching the performance of an oracle that knows the missing mechanism. Secondly, missing always decreases available information. The PI plans to develop theory and methods for the sequential estimation with assigned risk and minimal stopping time, which becomes an attractive and feasible remedy when a priori knowledge of the size of available observations is precluded by missing. Thirdly, the PI plans to develop a shrinking local minimax methodology for missing data and construct a new type of data-driven estimators that can attain the faster minimax rate. Lastly, the project will develop sharp minimax theory and efficient nonparametric estimator for survival analysis in the presence of missing data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目侧重于在缺少数据的情况下开展由医疗和工程应用推动的统计活动,这是统计分析中常见且往往不可避免的复杂问题。第一个主要活动的动机是对人脑的功能磁共振图像进行分析。该项目将开发和测试统计程序,使医生和生物工程师能够考虑丢失的数据,在了解神经可塑性和开发诊断和治疗阿尔茨海默氏症和帕金森氏症的新方法方面具有潜在的应用价值。第二项主要活动是对癌细胞的辐射和药物治疗进行统计分析,并寻找前列腺癌和乳腺癌的有效治疗方法。第三项主要活动是为时间序列分析开发新的统计方法,将环境应用于废水处理和减少污染。该项目可能会对环境、精算、癌症和大脑研究产生影响。研究生将参与该项目,所获得的结果将通过出版物、在会议上的陈述和免费R包的分发来传播。该项目侧重于在存在缺失数据的情况下非参数曲线估计的几个主题。首先,当仅基于数据不可能进行一致估计时,丢失可能是破坏性的,然后需要探索性抽样来解锁丢失数据中包含的信息。该项目将开发有效(最低成本)探索性抽样的方法、理论和方法,使之能够与知道缺失机制的先知的性能相匹配。其次,丢失总是会减少可用信息。PI计划发展分配风险和最小停止时间的序贯估计的理论和方法,当可用观测值的大小的先验知识被遗漏排除时,这成为一种有吸引力的可行的补救措施。第三,PI计划开发一种针对缺失数据的收缩局部极小极大方法,并构造一种新型的数据驱动估计器,以获得更快的极小极大速度。最后,该项目将开发尖锐的极大极小理论和高效的非参数估计器,用于在存在缺失数据的情况下进行生存分析。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sam Efromovich其他文献

On rate and sharp optimal estimation
A lower-bound oracle inequality for a blockwise-shrinkage estimate
  • DOI:
    10.1016/j.jspi.2005.10.006
  • 发表时间:
    2007-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sam Efromovich
  • 通讯作者:
    Sam Efromovich
Sharp Lower Bound for Regression with Measurement Errors and Its Implication for Ill-Posedness of Functional Regression
测量误差回归的急剧下界及其对函数回归不适定性的影响
Analysis of blockwise shrinkage wavelet estimates via lower bounds for no-signal setting

Sam Efromovich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sam Efromovich', 18)}}的其他基金

Topics in Nonparametric Statistics: Faster Minimax Rates, Large-p-Small-n Cross-Correlation Matrices, Survival Analysis
非参数统计主题:更快的极小极大速率、大 p 小 n 互相关矩阵、生存分析
  • 批准号:
    1513461
  • 财政年份:
    2015
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Nonparametric Curve Estimation in the Presence of Nuisance Functions
存在干扰函数时的非参数曲线估计
  • 批准号:
    0906790
  • 财政年份:
    2009
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
Nonparametric Curve Estimation: Theory and Practice
非参数曲线估计:理论与实践
  • 批准号:
    0638468
  • 财政年份:
    2006
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
Theory and Applications of Sharp Nonparametric Estimation and Learning
尖锐非参数估计与学习的理论与应用
  • 批准号:
    0643684
  • 财政年份:
    2006
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Nonparametric Curve Estimation: Theory and Practice
非参数曲线估计:理论与实践
  • 批准号:
    0604558
  • 财政年份:
    2006
  • 资助金额:
    $ 19万
  • 项目类别:
    Continuing Grant
Theory and Applications of Sharp Nonparametric Estimation and Learning
尖锐非参数估计与学习的理论与应用
  • 批准号:
    0243606
  • 财政年份:
    2003
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Optimal Curve Estimation: from Asymptotic to Small Sample Sizes
最优曲线估计:从渐近到小样本量
  • 批准号:
    9971051
  • 财政年份:
    1999
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Curve Estimation Involving Time Series
涉及时间序列的曲线估计
  • 批准号:
    9625412
  • 财政年份:
    1996
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Adaptive estimation of nonparametric curves
数学科学:非参数曲线的自适应估计
  • 批准号:
    9123956
  • 财政年份:
    1992
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant

相似海外基金

Estimation of listener's emotion curve from acoustic parameters
从声学参数估计听者的情绪曲线
  • 批准号:
    21J13539
  • 财政年份:
    2021
  • 资助金额:
    $ 19万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Nonparametric estimation and forecasting of yield curve dynamics
收益率曲线动态的非参数估计和预测
  • 批准号:
    DE170100713
  • 财政年份:
    2017
  • 资助金额:
    $ 19万
  • 项目类别:
    Discovery Early Career Researcher Award
Development of a real-time response curve estimation of the canopy net photosynthetic rate to the CO2 supply rate in a ventilated greenhouse
开发通风温室冠层净光合速率对二氧化碳供应速率的实时响应曲线估计
  • 批准号:
    17K19306
  • 财政年份:
    2017
  • 资助金额:
    $ 19万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Algorithm of gross primary production estimation using light-response curve and canopy conductance index
利用光响应曲线和冠层电导指数估算总初级生产力的算法
  • 批准号:
    16K00514
  • 财政年份:
    2016
  • 资助金额:
    $ 19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Multidimensional Curve Estimation for Diffusion MRI
合作研究:扩散 MRI 的多维曲线估计
  • 批准号:
    1443252
  • 财政年份:
    2014
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
A damage estimation model applying a damage boundary curve and considering the purchasing behaviour of consumers
应用损害边界曲线并考虑消费者购买行为的损害估计模型
  • 批准号:
    26850160
  • 财政年份:
    2014
  • 资助金额:
    $ 19万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Collaborative Research: Multidimensional Curve Estimation for Diffusion MRI
合作研究:扩散 MRI 的多维曲线估计
  • 批准号:
    1208917
  • 财政年份:
    2012
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Multidimensional Curve Estimation for Diffusion MRI
合作研究:扩散 MRI 的多维曲线估计
  • 批准号:
    1208238
  • 财政年份:
    2012
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Statistical classification and curve estimation in some nonstandard cases
一些非标准情况下的统计分类和曲线估计
  • 批准号:
    203013-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 19万
  • 项目类别:
    Discovery Grants Program - Individual
Cross-disciplinary research between machine learning and biostatistics based on curve estimation
基于曲线估计的机器学习与生物统计学的跨学科研究
  • 批准号:
    23500350
  • 财政年份:
    2011
  • 资助金额:
    $ 19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了