Statistical inference when both the model and/or data dimension is large
当模型和/或数据维度都很大时的统计推断
基本信息
- 批准号:0906808
- 负责人:
- 金额:$ 51.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator is studying inference for data which is both high dimensional and complex.The main topics investigated are:I. Identifying graphical modelsII.Ascribing explanatory power to variablesIII.Frequentist behaviour of nonparametric Bayes proceduresIV.Particle filtersThe framework is non and semiparametric and the results will be asymptotic.But the qualitative insights gained have led to the discovery of new methods by the investigator and should do so again.A preeminent feature of 21st century data in almost all fields is their complexity compared to he number of replicates.Images can be viewed as vectors with dimensions in the thousands,climate models produce vectors giving predicted values at tens of thousands of locations ,genomes are 3 billion basepairs long.Accompanying this type of data is a dearth of models for their generation.What theory there is for such situations tells us that we should be unable to do anything without impossibly large numbers of replicates.Yet are coping,we believe because ,if we consider predictions the models are "sparse"(Most factors are irrelevant) or data are "sparse" (The factors which do matter are highly dependent and can in fact be represented much more compactly than is apparent.) The investigator is studying these underlying ideas and developing models which apply in contexts including climate modeling, genomics, and astronomy.
本课题主要研究高维复杂数据的推理问题。识别图形模型II.对变量赋予解释能力III.非参数贝叶斯过程的频率主义行为IV.粒子滤波器框架是非参数和半参数的,结果将是渐近的。但是所获得的定性见解已经导致研究人员发现新方法,并且应该再次这样做。21世纪世纪几乎所有领域的数据的一个突出特点是它们的复杂性,图像可以被看作是具有数千维的向量,气候模型产生的向量给出了数万个位置的预测值,基因组有30亿个碱基对长。伴随着这类数据的是它们产生的模型的缺乏。对于这种情况有什么理论告诉我们,如果没有不可能的大量碱基对,我们应该无法做任何事情。然而,我们相信,如果我们考虑预测,模型是“稀疏的”(大多数因素是不相关的)或数据是“稀疏的”(重要的因素是高度依赖的,实际上可以比表面上更复杂地表示)。研究人员正在研究这些基本思想,并开发适用于气候建模,基因组学和天文学等背景的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Bickel其他文献
On maximizing item information and matching difficulty with ability
- DOI:
10.1007/bf02295733 - 发表时间:
2001-03-01 - 期刊:
- 影响因子:3.100
- 作者:
Peter Bickel;Steven Buyske;Huahua Chang;Zhiliang Ying - 通讯作者:
Zhiliang Ying
Peter Bickel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Bickel', 18)}}的其他基金
Collaborative Research: Inference for Network Models with Covariates: Leveraging Local Information for Statistically and Computationally Efficient Estimation of Global Parameters
协作研究:具有协变量的网络模型的推理:利用局部信息对全局参数进行统计和计算上的高效估计
- 批准号:
1713083 - 财政年份:2017
- 资助金额:
$ 51.99万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Unified statistical theory for the analysis and discovery of complex networks
FRG:协作研究:用于分析和发现复杂网络的统一统计理论
- 批准号:
1160319 - 财政年份:2012
- 资助金额:
$ 51.99万 - 项目类别:
Standard Grant
Construction and Analysis of Methods for Making Appropriate Use of Low Dimensional Structure in Data and Models When Apparent Dimension is Very High
表观维数很高时在数据和模型中适当使用低维结构的方法的构建和分析
- 批准号:
0605236 - 财政年份:2006
- 资助金额:
$ 51.99万 - 项目类别:
Continuing Grant
Adaptive Methods for Nonparametric Classification and Regression/Supervised Learning, Inference in HMM and State Space Models and Inference in Semiparametric Models
非参数分类和回归/监督学习的自适应方法、HMM 和状态空间模型中的推理以及半参数模型中的推理
- 批准号:
0104075 - 财政年份:2001
- 资助金额:
$ 51.99万 - 项目类别:
Continuing Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
- 批准号:
9977431 - 财政年份:1999
- 资助金额:
$ 51.99万 - 项目类别:
Standard Grant
Research on Sieve Approximations to Non and Semiparametric Models, Hidden Markov Models and Comparison of Phylogenetic Tree Biologies
非参数和半参数模型的筛逼近、隐马尔可夫模型以及系统发育树生物学比较的研究
- 批准号:
9802960 - 财政年份:1998
- 资助金额:
$ 51.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Hidden Mark CV Models, Semi-parametric Models, and Sample Reuse Models
数学科学:隐藏标记 CV 模型、半参数模型和样本重用模型
- 批准号:
9504955 - 财政年份:1995
- 资助金额:
$ 51.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Theoretical Statistics
数学科学:理论统计研究
- 批准号:
9115577 - 财政年份:1992
- 资助金额:
$ 51.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Constructing and Testing a Robust Version of the ACE Algorithm
数学科学:构建和测试 ACE 算法的鲁棒版本
- 批准号:
8514633 - 财政年份:1985
- 资助金额:
$ 51.99万 - 项目类别:
Standard Grant
相似海外基金
Towards remission and full recovery from obsessive-compulsive disorder: Investigating the efficacy of Inference-Based Cognitive-Behavioral Therapy when standard treatment has failed
强迫症的缓解和完全康复:研究标准治疗失败时基于推理的认知行为疗法的疗效
- 批准号:
477668 - 财政年份:2023
- 资助金额:
$ 51.99万 - 项目类别:
Operating Grants
Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
- 批准号:
RGPIN-2021-04357 - 财政年份:2022
- 资助金额:
$ 51.99万 - 项目类别:
Discovery Grants Program - Individual
Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
- 批准号:
DGECR-2021-00428 - 财政年份:2021
- 资助金额:
$ 51.99万 - 项目类别:
Discovery Launch Supplement
Novel causal inference methods to inform clinical decision on when to discontinue symptomatic treatment for patients with dementia
新的因果推断方法可为痴呆患者何时停止对症治疗提供临床决策
- 批准号:
10322425 - 财政年份:2021
- 资助金额:
$ 51.99万 - 项目类别:
Improving statistical inference when interest focuses on the identification of extreme random effects in clustered data
当兴趣集中于识别集群数据中的极端随机效应时,改进统计推断
- 批准号:
10179473 - 财政年份:2021
- 资助金额:
$ 51.99万 - 项目类别:
Improving statistical inference when interest focuses on the identification of extreme random effects in clustered data
当兴趣集中于识别集群数据中的极端随机效应时,改进统计推断
- 批准号:
10665751 - 财政年份:2021
- 资助金额:
$ 51.99万 - 项目类别:
Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
- 批准号:
RGPIN-2021-04357 - 财政年份:2021
- 资助金额:
$ 51.99万 - 项目类别:
Discovery Grants Program - Individual
dimensionality reduction when causal inference is the goal
当因果推理为目标时降维
- 批准号:
2097182 - 财政年份:2018
- 资助金额:
$ 51.99万 - 项目类别:
Studentship
Valid Inference when Analytical Models are Approximations
当分析模型为近似值时的有效推理
- 批准号:
1512084 - 财政年份:2015
- 资助金额:
$ 51.99万 - 项目类别:
Standard Grant
Statistical inference for molecules: How many, when and where? (A07*)
分子的统计推断:有多少、何时何地?
- 批准号:
278012085 - 财政年份:2015
- 资助金额:
$ 51.99万 - 项目类别:
Collaborative Research Centres