Adaptive Methods for Nonparametric Classification and Regression/Supervised Learning, Inference in HMM and State Space Models and Inference in Semiparametric Models
非参数分类和回归/监督学习的自适应方法、HMM 和状态空间模型中的推理以及半参数模型中的推理
基本信息
- 批准号:0104075
- 负责人:
- 金额:$ 63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In non and semiparametric inference Bickel, in collaboration with Ritov and others, proposes to study how an increasing but proportionally vanishingly small cross validation sample can be used systematically to optimize supervised learning (classification and regression) procedures, for example ADA BOOST. Further they propose to study a unified theory for testing of semiparametric hypotheses and develop efficient tests for bioequivalence. In dependent data models, they propose to extend previous results on Hidden Markov models to state space models and study how procedures obtained by fitting and use of approximate likelihoods such as particle filters behave.The investigator and collaborators propose to analyze and develop new effective methods for identifying (by machine) the type of a newly perceived object or predicting some feature from historical information. This ranges from machine reading of hand written zip codes to predicting travel times of cars from one destination to another to predicting tumor type from microarray data. In a similar direction they propose to see how well computer simulation based approximations to ideal prediction methods work in very complicated models applying to situations such as voice recognition. Further they propose to study methods of inference bearing on questions such as whether a new drug which may be more expensive and have side-effects is sufficiently better than drugs currently in use to be authorized for distribution.
在非参数和半参数推理中,Bickel与Ritov等人合作,提出研究如何系统地使用不断增加但按比例消失的小交叉验证样本来优化监督学习(分类和回归)程序,例如ADA BOOST。 此外,他们建议研究半参数假设检验的统一理论,并开发有效的生物等效性检验。 在依赖数据模型中,他们建议将隐马尔可夫模型的先前结果扩展到状态空间模型,并研究通过拟合和使用近似似然性(如粒子滤波器)获得的程序如何表现。研究者和合作者建议分析和开发新的有效方法,用于识别(通过机器)新感知对象的类型或从历史信息中预测某些特征。 这包括从机器阅读手写的邮政编码到预测汽车从一个目的地到另一个目的地的旅行时间,再到从微阵列数据预测肿瘤类型。 在类似的方向上,他们建议看看基于计算机模拟的理想预测方法在应用于语音识别等情况的非常复杂的模型中的效果如何。 此外,他们还建议研究与诸如可能更昂贵且具有副作用的新药是否比目前使用的药物好得多等问题有关的推理方法,以便批准销售。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Bickel其他文献
On maximizing item information and matching difficulty with ability
- DOI:
10.1007/bf02295733 - 发表时间:
2001-03-01 - 期刊:
- 影响因子:3.100
- 作者:
Peter Bickel;Steven Buyske;Huahua Chang;Zhiliang Ying - 通讯作者:
Zhiliang Ying
Peter Bickel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Bickel', 18)}}的其他基金
Collaborative Research: Inference for Network Models with Covariates: Leveraging Local Information for Statistically and Computationally Efficient Estimation of Global Parameters
协作研究:具有协变量的网络模型的推理:利用局部信息对全局参数进行统计和计算上的高效估计
- 批准号:
1713083 - 财政年份:2017
- 资助金额:
$ 63万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Unified statistical theory for the analysis and discovery of complex networks
FRG:协作研究:用于分析和发现复杂网络的统一统计理论
- 批准号:
1160319 - 财政年份:2012
- 资助金额:
$ 63万 - 项目类别:
Standard Grant
Statistical inference when both the model and/or data dimension is large
当模型和/或数据维度都很大时的统计推断
- 批准号:
0906808 - 财政年份:2009
- 资助金额:
$ 63万 - 项目类别:
Standard Grant
Construction and Analysis of Methods for Making Appropriate Use of Low Dimensional Structure in Data and Models When Apparent Dimension is Very High
表观维数很高时在数据和模型中适当使用低维结构的方法的构建和分析
- 批准号:
0605236 - 财政年份:2006
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
- 批准号:
9977431 - 财政年份:1999
- 资助金额:
$ 63万 - 项目类别:
Standard Grant
Research on Sieve Approximations to Non and Semiparametric Models, Hidden Markov Models and Comparison of Phylogenetic Tree Biologies
非参数和半参数模型的筛逼近、隐马尔可夫模型以及系统发育树生物学比较的研究
- 批准号:
9802960 - 财政年份:1998
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant
Mathematical Sciences: Hidden Mark CV Models, Semi-parametric Models, and Sample Reuse Models
数学科学:隐藏标记 CV 模型、半参数模型和样本重用模型
- 批准号:
9504955 - 财政年份:1995
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant
Mathematical Sciences: Studies in Theoretical Statistics
数学科学:理论统计研究
- 批准号:
9115577 - 财政年份:1992
- 资助金额:
$ 63万 - 项目类别:
Standard Grant
Mathematical Sciences: Constructing and Testing a Robust Version of the ACE Algorithm
数学科学:构建和测试 ACE 算法的鲁棒版本
- 批准号:
8514633 - 财政年份:1985
- 资助金额:
$ 63万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New Development of Nonparametric and Semiparametric Estimation Methods in Economics, Finance and Insurance
经济、金融和保险领域非参数和半参数估计方法的新进展
- 批准号:
23K01340 - 财政年份:2023
- 资助金额:
$ 63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2022
- 资助金额:
$ 63万 - 项目类别:
Discovery Grants Program - Individual
Statistical infernce for survival data: nonparametric methods and deep learning
生存数据的统计推断:非参数方法和深度学习
- 批准号:
RGPIN-2019-05574 - 财政年份:2022
- 资助金额:
$ 63万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric statistical methods based on graph theory
基于图论的非参数统计方法
- 批准号:
RGPIN-2022-03264 - 财政年份:2022
- 资助金额:
$ 63万 - 项目类别:
Discovery Grants Program - Individual
A suite of new nonparametric methods for missing data and data from heterogeneous sources based on the theory of Frechet classes
基于 Frechet 类理论的一套新的用于缺失数据和异构源数据的非参数方法
- 批准号:
EP/W016117/1 - 财政年份:2022
- 资助金额:
$ 63万 - 项目类别:
Research Grant
Robust and nonparametric methods for complex data objects
适用于复杂数据对象的稳健非参数方法
- 批准号:
RGPIN-2019-04610 - 财政年份:2022
- 资助金额:
$ 63万 - 项目类别:
Discovery Grants Program - Individual
Random forests, nonparametric and screening methods
随机森林、非参数和筛选方法
- 批准号:
RGPIN-2016-05702 - 财政年份:2022
- 资助金额:
$ 63万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
- 批准号:
RGPIN-2018-05578 - 财政年份:2022
- 资助金额:
$ 63万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2021
- 资助金额:
$ 63万 - 项目类别:
Discovery Grants Program - Individual
Robust and nonparametric methods for complex data objects
适用于复杂数据对象的稳健非参数方法
- 批准号:
RGPIN-2019-04610 - 财政年份:2021
- 资助金额:
$ 63万 - 项目类别:
Discovery Grants Program - Individual