Collaborative Research: Inference for Network Models with Covariates: Leveraging Local Information for Statistically and Computationally Efficient Estimation of Global Parameters

协作研究:具有协变量的网络模型的推理:利用局部信息对全局参数进行统计和计算上的高效估计

基本信息

  • 批准号:
    1713083
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Large datasets, which are naturally modeled as a network or graph, arise in almost every field of human endeavor. For example, Facebook is a social network, where nodes are users, with edges corresponding to friendships. In gene networks, nodes represent genes with connections corresponding to their co-expression. In ecological networks, the nodes are animal species, with edges determined according to who eats whom. A major focus of research for network or graph data has been on identifying community membership of the nodes. However, what is often more important for scientific purposes is examining the nature and evolution of edge and membership probabilities, for instance changes in gene features of individuals as a function of some unknown factor, like a disease. The focus on using other measured features of nodes and edges could add, in decisive ways, to the information available from observed edges or interactions between nodes. These could be disease symptoms or test results, or demographic information of users in social networks. Statistical inference in such models, despite its importance, has only just begun to be studied. There are both theoretical and computational challenges, due both to the complexity of models fitted, and the size of data sets. The research will lead to the development of algorithms for fitting models and statistical measures of confidence, with potential applications to many fields. The research is focused on block models for graphs, when node or edge covariates are present. When formulated, these models are no longer block models, but models whose membership probabilities depend upon covariates and whose connection probabilities depend both on block membership and individual covariates. Fitting algorithms involve alternating between fitting block and covariate parameters. Variational (mean field) approaches which effectively lead to semi-parametric model fitting with nK membership "nuisance" parameters, with n representing the number of nodes and K the number of communities, are examined. As these approaches have been found by the PIs to be unstable for large n, the PIs have already begun to investigate the theoretical and practical aspects of divide and conquer algorithms where many subgraphs are independently fit. The PIs will study the statistical properties, both asymptotically and through simulations, and develop practicable and computationally stable methods for large, relatively sparse graphs.
大型数据集,自然地被建模为网络或图,几乎出现在人类努力的每个领域。例如,Facebook是一个社交网络,其中节点是用户,边缘对应友谊。在基因网络中,节点表示具有与其共表达相对应的连接的基因。在生态网络中,节点是动物物种,其边缘是根据谁吃谁来确定的。网络或图数据研究的一个主要焦点是识别节点的社区成员。然而,对于科学目的来说,更重要的是检查边缘和成员概率的本质和进化,例如,个体基因特征的变化作为某种未知因素(如疾病)的函数。将重点放在使用节点和边缘的其他测量特征上,可以以决定性的方式增加从观察到的边缘或节点之间的相互作用中获得的信息。这些可能是疾病症状或测试结果,或社交网络用户的人口统计信息。这些模型中的统计推断,尽管很重要,但研究才刚刚开始。由于模型拟合的复杂性和数据集的规模,这在理论上和计算上都存在挑战。这项研究将导致拟合模型和置信度统计措施的算法的发展,在许多领域具有潜在的应用。当节点或边协变量存在时,研究的重点是图的块模型。当制定这些模型时,这些模型不再是块模型,而是成员概率依赖于协变量的模型,其连接概率依赖于块成员和单个协变量的模型。拟合算法涉及在拟合块和协变量参数之间交替进行。变分(平均场)方法,有效地导致半参数模型拟合与nK成员“讨厌”参数,其中n代表节点的数量和K的社区的数量,进行了检查。由于pi已经发现这些方法对于大n是不稳定的,pi已经开始研究分而治之算法的理论和实践方面,其中许多子图是独立拟合的。pi将通过渐近和模拟研究统计性质,并为大型相对稀疏的图开发实用且计算稳定的方法。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotics for high dimensional regression M-estimates: fixed design results
  • DOI:
    10.1007/s00440-017-0824-7
  • 发表时间:
    2016-12
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Lihua Lei;P. Bickel;N. Karoui
  • 通讯作者:
    Lihua Lei;P. Bickel;N. Karoui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Bickel其他文献

On maximizing item information and matching difficulty with ability
  • DOI:
    10.1007/bf02295733
  • 发表时间:
    2001-03-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Peter Bickel;Steven Buyske;Huahua Chang;Zhiliang Ying
  • 通讯作者:
    Zhiliang Ying

Peter Bickel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Bickel', 18)}}的其他基金

FRG: Collaborative Research: Unified statistical theory for the analysis and discovery of complex networks
FRG:协作研究:用于分析和发现复杂网络的统一统计理论
  • 批准号:
    1160319
  • 财政年份:
    2012
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Statistical inference when both the model and/or data dimension is large
当模型和/或数据维度都很大时的统计推断
  • 批准号:
    0906808
  • 财政年份:
    2009
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Construction and Analysis of Methods for Making Appropriate Use of Low Dimensional Structure in Data and Models When Apparent Dimension is Very High
表观维数很高时在数据和模型中适当使用低维结构的方法的构建和分析
  • 批准号:
    0605236
  • 财政年份:
    2006
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Adaptive Methods for Nonparametric Classification and Regression/Supervised Learning, Inference in HMM and State Space Models and Inference in Semiparametric Models
非参数分类和回归/监督学习的自适应方法、HMM 和状态空间模型中的推理以及半参数模型中的推理
  • 批准号:
    0104075
  • 财政年份:
    2001
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
  • 批准号:
    9977431
  • 财政年份:
    1999
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Research on Sieve Approximations to Non and Semiparametric Models, Hidden Markov Models and Comparison of Phylogenetic Tree Biologies
非参数和半参数模型的筛逼近、隐马尔可夫模型以及系统发育树生物学比较的研究
  • 批准号:
    9802960
  • 财政年份:
    1998
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Hidden Mark CV Models, Semi-parametric Models, and Sample Reuse Models
数学科学:隐藏标记 CV 模型、半参数模型和样本重用模型
  • 批准号:
    9504955
  • 财政年份:
    1995
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Studies in Theoretical Statistics
数学科学:理论统计研究
  • 批准号:
    9115577
  • 财政年份:
    1992
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Constructing and Testing a Robust Version of the ACE Algorithm
数学科学:构建和测试 ACE 算法的鲁棒版本
  • 批准号:
    8514633
  • 财政年份:
    1985
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Statistical Inference
统计推断
  • 批准号:
    7903716
  • 财政年份:
    1979
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
  • 批准号:
    2311249
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: MEDIUM: General and Scalable Pluggable Type Inference
合作研究:SHF:MEDIUM:通用且可扩展的可插入类型推理
  • 批准号:
    2312263
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324489
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
  • 批准号:
    2311251
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312502
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了