FRG: Collaborative Research: Unified statistical theory for the analysis and discovery of complex networks

FRG:协作研究:用于分析和发现复杂网络的统一统计理论

基本信息

  • 批准号:
    1160319
  • 负责人:
  • 金额:
    $ 119.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

The investigators will develop a unified nonparametric theoretical framework to study stochastic network models and design scalable algorithms (and software) to fit these models. They intend to carry out the development and validation of their methods with collaborators in biology who have gathered extensive new data for the assessment of protein structure and determination of biological pathways particularly in Drosophila. Such problems are omnipresent in genomics and they expect their methods to carry over widely. They will also use networks with uncertainty measures to study relationships between words and phrases in a newspaper database in order to provide media analysts with automatic and scalable algorithms. In all cases they will focus on methods of general statistical confidence which have been lacking in work so far.Our world is connected through relationships, among "actors" who can be people, organizations, words, genes, proteins, and more. Advancements of information technology have enabled collection of massive amounts of data in all disciplines for us to build relationships between these actors. These relationships can be effectively described as networks, and properties or patterns in these networks can be random or knowledge. Responding to this recent data availability and a huge potential for knowledge discovery, research in networks is attracting much attention from researchers in physics, social science, computer science, and probability. While contributing to the development of core statistical research, the proposed research will directly impact the interdisciplinary field of network analysis and the study of complex networks. The applications of their research results are diverse and well beyond the two fields studied in the proposal: genomics and media analysis. They include national security, communications, sociology, political science, and infectious disease. The statistical tools developed are unifying and could change how many scientists approach network analysis. As a result, statistical research will become more prominent in the networks community.
研究人员将开发一个统一的非参数理论框架来研究随机网络模型,并设计可扩展的算法(和软件)来适应这些模型。他们打算与生物学领域的合作者一起开发和验证他们的方法,这些合作者已经收集了广泛的新数据,用于评估蛋白质结构和确定生物学途径,特别是在果蝇中。这样的问题在基因组学中无处不在,他们希望他们的方法能广泛应用。 他们还将使用具有不确定性度量的网络来研究报纸数据库中单词和短语之间的关系,以便为媒体分析师提供自动和可扩展的算法。在所有的情况下,他们将集中在一般的统计信心的方法,一直缺乏在工作迄今为止。我们的世界是通过关系,“演员”谁可以是人,组织,文字,基因,蛋白质,等等。信息技术的进步使我们能够在所有学科中收集大量数据,以便在这些行为者之间建立关系。这些关系可以有效地描述为网络,这些网络中的属性或模式可以是随机的或知识的。由于最近的数据可用性和知识发现的巨大潜力,网络研究吸引了物理学,社会科学,计算机科学和概率学研究人员的广泛关注。在促进核心统计研究的发展的同时,拟议的研究将直接影响网络分析和复杂网络研究的跨学科领域。他们的研究成果的应用是多样化的,远远超出了两个领域的研究建议:基因组学和媒体分析。它们包括国家安全,通信,社会学,政治学和传染病。开发的统计工具是统一的,可能会改变多少科学家接近网络分析。因此,统计研究将在网络社区中变得更加突出。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Bickel其他文献

On maximizing item information and matching difficulty with ability
  • DOI:
    10.1007/bf02295733
  • 发表时间:
    2001-03-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Peter Bickel;Steven Buyske;Huahua Chang;Zhiliang Ying
  • 通讯作者:
    Zhiliang Ying

Peter Bickel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Bickel', 18)}}的其他基金

Collaborative Research: Inference for Network Models with Covariates: Leveraging Local Information for Statistically and Computationally Efficient Estimation of Global Parameters
协作研究:具有协变量的网络模型的推理:利用局部信息对全局参数进行统计和计算上的高效估计
  • 批准号:
    1713083
  • 财政年份:
    2017
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Standard Grant
Statistical inference when both the model and/or data dimension is large
当模型和/或数据维度都很大时的统计推断
  • 批准号:
    0906808
  • 财政年份:
    2009
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Standard Grant
Construction and Analysis of Methods for Making Appropriate Use of Low Dimensional Structure in Data and Models When Apparent Dimension is Very High
表观维数很高时在数据和模型中适当使用低维结构的方法的构建和分析
  • 批准号:
    0605236
  • 财政年份:
    2006
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Continuing Grant
Adaptive Methods for Nonparametric Classification and Regression/Supervised Learning, Inference in HMM and State Space Models and Inference in Semiparametric Models
非参数分类和回归/监督学习的自适应方法、HMM 和状态空间模型中的推理以及半参数模型中的推理
  • 批准号:
    0104075
  • 财政年份:
    2001
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Continuing Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
  • 批准号:
    9977431
  • 财政年份:
    1999
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Standard Grant
Research on Sieve Approximations to Non and Semiparametric Models, Hidden Markov Models and Comparison of Phylogenetic Tree Biologies
非参数和半参数模型的筛逼近、隐马尔可夫模型以及系统发育树生物学比较的研究
  • 批准号:
    9802960
  • 财政年份:
    1998
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Hidden Mark CV Models, Semi-parametric Models, and Sample Reuse Models
数学科学:隐藏标记 CV 模型、半参数模型和样本重用模型
  • 批准号:
    9504955
  • 财政年份:
    1995
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Studies in Theoretical Statistics
数学科学:理论统计研究
  • 批准号:
    9115577
  • 财政年份:
    1992
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Constructing and Testing a Robust Version of the ACE Algorithm
数学科学:构建和测试 ACE 算法的鲁棒版本
  • 批准号:
    8514633
  • 财政年份:
    1985
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Standard Grant
Statistical Inference
统计推断
  • 批准号:
    7903716
  • 财政年份:
    1979
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 119.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了