Electron-Phonon Interaction and Disorder: Nanoscale Interference in Transport Phenomena
电子声子相互作用和无序:传输现象中的纳米级干扰
基本信息
- 批准号:0907126
- 负责人:
- 金额:$ 29.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).TECHNICAL SUMMARYThis award supports theoretical research and education focused on electron-phonon kinetics and electric, thermal, and thermomagnetic transport in low-dimensional conductors, nanomaterials, and strongly correlated materials such as doped Mott dielectrics, e.g. novel superconductors and conducting polymers. Vibrating boundaries, defects, or dopants generates another channel of electron-phonon interaction, which interferes with the usual electron-phonon and elastic electron scattering. The interference of scattering mechanisms drastically modifies kinetic and transport phenomena. The interference effects can be strong and easily observable. While effects of interference have been known for some time, the research in this field is limited. The PIs will investigate electron-phonon kinetics and electric, thermal, and themomagnetic transport in low-dimensional structures, such as heterostructures, ultrathin films, multi-walled carbon nanotubes, nanowires, metallic clusters, and quantum dot arrays. In low dimensions, strong enhancement of interference effects is expected due to a smaller electron momentum transfer and due to intrinsic peculiarities in the momentum transfer related to the collective excitations. The PIs will investigate electron-phonon interference effects in specific materials, such as graphene and various doped Mott dielectrics.The research is aimed to contribute to the development of critical insights into the quantum interference of scattering mechanisms in kinetics and transport and will contribute to significantly improved theoretical techniques, related to the quantum transport equation and Feynman-Keldysh diagrammatic techniques. This research program contributes to developing effective ways to manage electron-phonon transport and energy transfer which will, in turn, strongly impact the development of advanced nanodevices and materials. A number of puzzling experimental results will find their explanation in the framework developed by this program.The project will have broader impacts through its contributions to education, and by developing theoretical models that can have impact in materials science and engineering. Nanoscale thermal management will substantially affect practically all branches of the electronics industry. This research will have immediate impact on the development of nanodevices in which energy transfer is ?tailored? to specific applications, e.g. ultrasensitive nanocalorimeters and single quanta nanodetectors operating at low and moderate temperatures. With graduate and undergraduate students, the PIs will develop a set of specialized experiments for elementary and high school students. These demonstrations are directly related to modern electronics and nanotechnology. The PIs will incorporate information technologies via Java Applets; they are extending these applets to incorporate the nanoworld energy transfer. They are also developing an interactive exhibit for the Physical World Science Studio of the Buffalo Museum of Science that will help to promote nanotechnology to a broader public. Lectures and demonstrations will be developed at a level appropriate for the general public.NON-TECHNICAL SUMMARYThis award supports theoretical research aimed to elucidate the microscopic mechanisms that control how heat and electricity flow through materials structures and devices that are thousands of times smaller than the diameter of a human hair. The PIs will develop a theory on the level of electrons and the atomic-scale surfaces and defects, and vibrations that they encounter as they flow through these tiny structures. This project will contribute to the intellectual foundations for managing heat dissipation at small length scales anticipated for future circuit feature sizes of semiconductor devices. The heat generated by high speed electronic devices looms as one of the barriers to the continuing trend toward ever smaller electronic devices known as Moore?s law. This research will also contribute to the intellectual foundations of detector technologies on small length scales.With graduate and undergraduate students, the PIs will develop a set of specialized experiments for elementary and high school students. These demonstrations are directly related to modern electronics and nanotechnology. The PIs will incorporate information technologies via Java Applets; they are extending these applets to incorporate the nanoworld energy transfer. They are also developing an interactive exhibit for the Physical World Science Studio of the Buffalo Museum of Science that will help to promote nanotechnology to a broader public. Lectures and demonstrations will be developed at a level appropriate for the general public.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。技术概述该奖项支持理论研究和教育,重点是电子-声子动力学和低维导体,纳米材料和强相关材料中的电,热和热磁输运,如掺杂的Mott超导体,例如新型超导体和导电聚合物。振动的边界、缺陷或掺杂物产生另一个电子-声子相互作用的通道,其干扰通常的电子-声子和弹性电子散射。散射机制的干扰极大地改变了动力学和输运现象。干扰效应可能很强,很容易观察到。虽然干扰的影响已经知道了一段时间,但在这一领域的研究是有限的。PI将研究低维结构中的电子-声子动力学和电,热和热磁传输,如异质结构,薄膜,多壁碳纳米管,纳米线,金属簇和量子点阵列。在低维,强烈增强的干扰效应,预计由于较小的电子动量转移,并由于在动量转移有关的集体激发的固有特性。该PI将研究特定材料中的电子-声子干涉效应,如石墨烯和各种掺杂的Mott dielectric。该研究旨在促进对动力学和传输中散射机制的量子干涉的关键见解的发展,并将有助于显着改进与量子传输方程和Feynman-Keldysh图解技术相关的理论技术。该研究计划有助于开发有效的方法来管理电子-声子传输和能量转移,这反过来又会对先进纳米器件和材料的发展产生重大影响。许多令人困惑的实验结果将在该计划开发的框架中找到解释。该项目将通过其对教育的贡献以及开发可能对材料科学和工程产生影响的理论模型产生更广泛的影响。纳米级热管理将实质上影响电子工业的几乎所有分支。这项研究将直接影响纳米器件的发展,其中能量转移是?量身定做的具体应用,例如在低温和中等温度下工作的超灵敏纳米热量计和单量子纳米探测器。与研究生和本科生,PI将开发一套专门的实验,小学和高中学生。这些演示与现代电子和纳米技术直接相关。PI将通过Java小程序整合信息技术;他们正在扩展这些小程序,以整合地球能量传输。他们还在为布法罗科学博物馆的物理世界科学工作室开发一个互动展览,这将有助于向更广泛的公众推广纳米技术。讲座和演示将在一个适当的水平,为广大公众。非技术总结该奖项支持理论研究,旨在阐明控制如何通过材料,结构和设备的热量和电力流动的微观机制,这些机制比人类头发的直径小数千倍。PI将开发一个关于电子和原子尺度表面和缺陷的理论,以及它们在流过这些微小结构时遇到的振动。该项目将有助于管理在小长度尺度预期的半导体器件的未来电路特征尺寸的散热的知识基础。高速电子设备产生的热量隐约成为一个障碍,继续朝着更小的电子设备称为摩尔?s定律。这项研究也将有助于在小长度尺度上的探测器技术的知识基础。与研究生和本科生,PI将开发一套专门的实验,小学和高中学生。这些演示与现代电子和纳米技术直接相关。PI将通过Java小程序整合信息技术;他们正在扩展这些小程序,以整合地球能量传输。他们还在为布法罗科学博物馆的物理世界科学工作室开发一个互动展览,这将有助于向更广泛的公众推广纳米技术。讲座和演示将在适合公众的水平上进行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Sergeyev其他文献
Andrei Sergeyev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei Sergeyev', 18)}}的其他基金
Effective Conversion due to Nano-Engineered Photocarrier Kinetics in Quantum Dot Medium
量子点介质中纳米工程光载流子动力学的有效转换
- 批准号:
1236459 - 财政年份:2013
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
相似海外基金
Ultrasonic investigation of electron-phonon interaction in excitonic insulator transition
激子绝缘体转变中电子-声子相互作用的超声研究
- 批准号:
22K13999 - 财政年份:2022
- 资助金额:
$ 29.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Enhancement of thermoelectric performance in superlattice film with Dirac electron system using electron-phonon interaction
利用电子-声子相互作用增强狄拉克电子系统超晶格薄膜的热电性能
- 批准号:
21K14536 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Controlling Electron-Phonon Interaction in Nanocircuits Strong Coupling Regime
控制纳米电路强耦合机制中的电子-声子相互作用
- 批准号:
405619279 - 财政年份:2018
- 资助金额:
$ 29.9万 - 项目类别:
Research Grants
Engineered electron-phonon interaction of negatively charged Silicon-Vacancy center in nanostructured diamond.
纳米结构金刚石中带负电的硅空位中心的工程电子-声子相互作用。
- 批准号:
398628099 - 财政年份:2018
- 资助金额:
$ 29.9万 - 项目类别:
Research Grants
Empirical research of electron-phonon interaction on transition-metal oxides
过渡金属氧化物电子-声子相互作用的实证研究
- 批准号:
16K05604 - 财政年份:2016
- 资助金额:
$ 29.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAPSI: Studies of the electron-phonon interaction in strongly correlated electron materials
EAPSI:强相关电子材料中电子-声子相互作用的研究
- 批准号:
1107911 - 财政年份:2011
- 资助金额:
$ 29.9万 - 项目类别:
Fellowship Award
Quantum transport in graphene - influence of disorder, electron-phonon interaction, electronic structure and functionalisation
石墨烯中的量子输运——无序、电子-声子相互作用、电子结构和功能化的影响
- 批准号:
172556010 - 财政年份:2010
- 资助金额:
$ 29.9万 - 项目类别:
Priority Programmes
Study of rattling and electron-phonon interaction in cage-structured compounds
笼状结构化合物中的振动和电子-声子相互作用研究
- 批准号:
21340097 - 财政年份:2009
- 资助金额:
$ 29.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The electron-phonon interaction resulting surface modification triggered by the low-energy highly-charged-ion
低能高电荷离子引发的电子-声子相互作用导致表面改性
- 批准号:
21510108 - 财政年份:2009
- 资助金额:
$ 29.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Electron-Acoustic Phonon Interaction Engineering in Nanoscale Structures.
纳米结构中的电声声子相互作用工程研究。
- 批准号:
20760221 - 财政年份:2008
- 资助金额:
$ 29.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)