GOALI: Quantifying Growth Mechanisms in Semiconductor Nanowires using Real Time Transmission Electron Microscopy

GOALI:使用实时透射电子显微镜量化半导体纳米线的生长机制

基本信息

  • 批准号:
    0907483
  • 负责人:
  • 金额:
    $ 70.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

Technical: Semiconductor nanowires are one of the primary nanostructured materials under investigation in the field of nanoscience. Because of their compatibility with existing semiconductor device processing methods and the possibility to control their electronic properties via such mechanisms as diameter selection, doping and heterostructure creation, they hold great promise as active elements in future electronic and optoelectronic devices. Significant industrial efforts focus on aspects of nanowire electronics such as integration and device performance. Critical to the success of these efforts is a fundamental understanding of the crystal growth processes involved in nanowire creation. In this Grant Opportunities for Academic Liaison with Industry (GOALI) project, real-time transmission electron microscopy techniques are used to characterize the mechanisms of semiconductor nanowire growth. The research aims to quantify growth kinetics relevant to the creation of advance device geometries, with a focus on heterostructures creation, interface abruptness and dopant effects. It seeks to provide fundamental insight into the semiconductor nanowire growth process via the technologically important vapor-liquid-solid and vapor-solid-solid growth processes. These insights are expected to lead to improved understanding of the self-assembly process and will provide a much needed scientific underpinning to the development of nanowire integration methodologies.Non-technical: The project addresses basic research issues in a topical area of materials science with high technological relevance. Nanoscale electronic devices offer the potential of allowing advances beyond the limits imposed by traditional lithographic fabrication methods. Graduate and postgraduate training forms a core activity of the project, with a program encompassing extensive lab experience at the world's leading industrial lab for basic research in semiconductor electronics. Additionally, in-situ transmission electron microscopy is one of the primary "eyes" into nanoscale behavior, allowing exciting, dynamic videos of real physical processes to be obtained. The PI will continue work with a scientific visualization company to develop realistic and scientifically accurate animations of nanowire growth. These animations will be used to describe the science of nanotechnology to a broad audience through multiple dissemination routes, and will be utilized along with real dynamic observations in a web-based class on Thin Film Deposition coordinated through Purdue's NSF sponsored NanoHUB.
技术:半导体纳米线是纳米科学领域正在研究的主要纳米结构材料之一。由于它们与现有的半导体器件加工方法兼容,并且可以通过直径选择、掺杂和异质结构产生等机制来控制其电子性质,因此它们在未来的电子和光电子器件中具有巨大的应用前景。工业上的重大努力集中在纳米线电子产品的各个方面,如集成度和设备性能。这些努力成功的关键是从根本上了解纳米线创造过程中涉及的晶体生长过程。在这个学术与工业联系机会(GOALI)项目中,实时电子显微镜技术被用来表征半导体纳米线生长的机制。这项研究旨在量化与先进器件几何形状的创建相关的生长动力学,重点关注异质结构的创建、界面突变和掺杂效应。它试图通过技术上重要的气-液-固和气-固-固生长过程来提供对半导体纳米线生长过程的基本见解。这些见解有望提高对自组装过程的理解,并将为纳米线集成方法的发展提供亟需的科学基础。非技术性:该项目解决了具有高度技术相关性的材料科学主题领域的基础研究问题。纳米级电子设备提供了超越传统光刻制造方法所施加的限制的发展潜力。研究生和研究生培训是该项目的核心活动,该项目涵盖了世界领先的半导体电子基础研究工业实验室的丰富实验室经验。此外,原位电子显微镜是研究纳米尺度行为的主要“眼睛”之一,可以获得真实物理过程的激动人心的动态视频。PI将继续与一家科学可视化公司合作,开发逼真和科学准确的纳米线生长动画。这些动画将被用来通过多种传播途径向广大受众描述纳米技术科学,并将与真实的动态观察一起用于通过普渡大学国家科学基金会赞助的NanoHUB协调的关于薄膜沉积的网络课堂。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Stach其他文献

Photoelectrocatalytic reduction of COsub2/sub to formate using immobilized molecular manganese catalysts on oxidized porous silicon
  • DOI:
    10.1016/j.chempr.2025.102462
  • 发表时间:
    2025-07-10
  • 期刊:
  • 影响因子:
    19.600
  • 作者:
    Young Hyun Hong;Xiaofan Jia;Eleanor Stewart-Jones;Abhishek Kumar;Justin C. Wedal;Jose L. Alvarez-Hernandez;Carrie L. Donley;Albert Gang;Noah J. Gibson;Nilay Hazari;Madison Houck;Sungho Jeon;Jongbeom Kim;Hyeongjun Koh;James M. Mayer;Brandon Q. Mercado;Hannah S. Nedzbala;Nicole Piekut;Christine Quist;Eric Stach;Yihui Zhang
  • 通讯作者:
    Yihui Zhang
Characterization of V-shaped Defects in 4H-SiC Homoepitaxial Layers
  • DOI:
    10.1007/s11664-014-3536-0
  • 发表时间:
    2014-12-04
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Fangzhen Wu;Huanhuan Wang;Balaji Raghothamachar;Michael Dudley;Gil Chung;Jie Zhang;Bernd Thomas;Edward K. Sanchez;Stephan G. Mueller;Darren Hansen;Mark J. Loboda;Lihua Zhang;Dong Su;Kim Kisslinger;Eric Stach
  • 通讯作者:
    Eric Stach
Nanotubes reveal their true strength
纳米管展现出它们真正的力量
  • DOI:
    10.1038/nnano.2008.293
  • 发表时间:
    2008-10-01
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Eric Stach
  • 通讯作者:
    Eric Stach

Eric Stach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Stach', 18)}}的其他基金

Materials Research Science and Engineering Centers (MRSEC) UPENN
材料研究科学与工程中心 (MRSEC) UPENN
  • 批准号:
    2309043
  • 财政年份:
    2023
  • 资助金额:
    $ 70.54万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: Quantifying the Coarsening Kinetics of Supported Metal Nanoparticles Using Time-resolved Electron Microscopy, Data Analytics and Simulations
合作研究:利用时间分辨电子显微镜、数据分析和模拟量化支撑金属纳米颗粒的粗化动力学
  • 批准号:
    2303084
  • 财政年份:
    2023
  • 资助金额:
    $ 70.54万
  • 项目类别:
    Standard Grant
REU Site: Laboratory for Research on the Structure of Matter
REU 站点:物质结构研究实验室
  • 批准号:
    2050863
  • 财政年份:
    2021
  • 资助金额:
    $ 70.54万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Dual-Beam Focused Ion Beam / Scanning Electron Microscope for Materials Research and Education
MRI:购买双束聚焦离子束/扫描电子显微镜用于材料研究和教育
  • 批准号:
    1828545
  • 财政年份:
    2018
  • 资助金额:
    $ 70.54万
  • 项目类别:
    Standard Grant
Quantifying the Coarsening Kinetics of Supported Metal Nanoparticles Using Time-resolved Electron Microscopy, Data Analytics and Simulations
使用时间分辨电子显微镜、数据分析和模拟量化负载金属纳米颗粒的粗化动力学
  • 批准号:
    1809398
  • 财政年份:
    2018
  • 资助金额:
    $ 70.54万
  • 项目类别:
    Continuing Grant
REU Site
REU网站
  • 批准号:
    1659512
  • 财政年份:
    2017
  • 资助金额:
    $ 70.54万
  • 项目类别:
    Standard Grant
Materials Research Science and Engineering Center
材料研究科学与工程中心
  • 批准号:
    1720530
  • 财政年份:
    2017
  • 资助金额:
    $ 70.54万
  • 项目类别:
    Cooperative Agreement
Quantifying Growth Mechanisms in Semiconductor Nanowires using Real Time Transmission Electron Microscopy
使用实时透射电子显微镜量化半导体纳米线的生长机制
  • 批准号:
    0606395
  • 财政年份:
    2006
  • 资助金额:
    $ 70.54万
  • 项目类别:
    Continuing Grant

相似海外基金

Deciphering and quantifying molecular interactions driving self-assembly and fibrillar growth in organogels
破译和量化驱动有机凝胶中自组装和纤维生长的分子相互作用
  • 批准号:
    RGPIN-2017-03869
  • 财政年份:
    2022
  • 资助金额:
    $ 70.54万
  • 项目类别:
    Discovery Grants Program - Individual
Quantifying effects of plant root growth on soil thermal properties and developing in-situ plant root density measurement
量化植物根系生长对土壤热性质的影响并开发原位植物根系密度测量
  • 批准号:
    21K14940
  • 财政年份:
    2021
  • 资助金额:
    $ 70.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantifying Error Growth to Improve Infectious Disease Forecast Accuracy
量化误差增长以提高传染病预测准确性
  • 批准号:
    10623347
  • 财政年份:
    2021
  • 资助金额:
    $ 70.54万
  • 项目类别:
Deciphering and quantifying molecular interactions driving self-assembly and fibrillar growth in organogels
破译和量化驱动有机凝胶中自组装和纤维生长的分子相互作用
  • 批准号:
    RGPIN-2017-03869
  • 财政年份:
    2021
  • 资助金额:
    $ 70.54万
  • 项目类别:
    Discovery Grants Program - Individual
Quantifying Error Growth to Improve Infectious Disease Forecast Accuracy
量化误差增长以提高传染病预测准确性
  • 批准号:
    10424587
  • 财政年份:
    2021
  • 资助金额:
    $ 70.54万
  • 项目类别:
Quantifying Error Growth to Improve Infectious Disease Forecast Accuracy
量化误差增长以提高传染病预测准确性
  • 批准号:
    10278807
  • 财政年份:
    2021
  • 资助金额:
    $ 70.54万
  • 项目类别:
Quantifying the sources and dynamics of tumor growth variability using Tuba-seq
使用 Tuba-seq 量化肿瘤生长变异性的来源和动态
  • 批准号:
    10394424
  • 财政年份:
    2020
  • 资助金额:
    $ 70.54万
  • 项目类别:
Quantifying the sources and dynamics of tumor growth variability using Tuba-seq
使用 Tuba-seq 量化肿瘤生长变异性的来源和动态
  • 批准号:
    10523113
  • 财政年份:
    2020
  • 资助金额:
    $ 70.54万
  • 项目类别:
Quantifying the sources and dynamics of tumor growth variability using Tuba-seq
使用 Tuba-seq 量化肿瘤生长变异性的来源和动态
  • 批准号:
    10304318
  • 财政年份:
    2020
  • 资助金额:
    $ 70.54万
  • 项目类别:
Deciphering and quantifying molecular interactions driving self-assembly and fibrillar growth in organogels
破译和量化驱动有机凝胶中自组装和纤维生长的分子相互作用
  • 批准号:
    RGPIN-2017-03869
  • 财政年份:
    2020
  • 资助金额:
    $ 70.54万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了