Singular limits, saturation, and defects in block copolymer morphology
嵌段共聚物形态的奇异极限、饱和度和缺陷
基本信息
- 批准号:0907777
- 负责人:
- 金额:$ 20.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
RenDMS-0907777 A diblock copolymer molecule is a linear chain of anA-monomer block grafted covalently to a B-monomer block. Becauseof the repulsion between the unlike monomers, the different typesub-chains tend to segregate, but as they are chemically bondedin chain molecules, segregation of sub-chains cannot lead to amacroscopic phase separation. Only a local micro-phaseseparation occurs: micro-domains rich in A monomers andmicro-domains rich in B monomers emerge as a result. Anano-sized pattern formed from micro-domains is known as amorphology phase. The investigator develops singular limitmethods to study morphology phases that concentrate on points,curves, and surfaces in space, and that might not be found byexisting free energy methods. These methods reduce complicatednonlinear, nonlocal, variational, and partial differentialequation problems to simpler geometric problems. They analyzethe saturation phenomenon: a process of elongation, deformation,and breaking off of a small number of large objects to form alarge number of small objects. They also explain defects inmorphological phases caused by local-nonlocal competition ortopological constraints. In the case of block copolymer vesiclesthe investigator studies the bending rigidity in the free energy. The singular limit techniques are extended to problems withoutvariational structures, such as the Gierer-Meinhardt system forbiological morphogenesis in development. Block copolymers are soft condensed materials that incontrast to crystalline solids, are characterized by fluid-likedisorder on the molecular scale and a high degree of order on alonger length scale. An almost unlimited number of moleculararchitectures can be designed by modern nano-technologies toproduce materials with particular mechanical, electric, barrier,ionic and other physical properties. Common box tapes usetriblock copolymers to achieve pressure-sensitive adhesion. Block copolymers are blended with asphalt in road construction toreduce pavement cracking and rutting at low and high temperatureextremes. In this project the investigator studies patternformations within block copolymers that are related to changes inthe morphology phase of the material, and hence to larger-scalematerial properties. The project includes graduate students, whodevelop skills and knowledge in both mathematics and materialsscience.
RenDMS-0907777 二嵌段共聚物分子是A-单体嵌段共价接枝到B-单体嵌段的线性链。 由于不同单体之间的排斥作用,不同类型的亚链倾向于分离,但由于它们是化学键合在链分子中,亚链的分离不会导致宏观相分离。 只有局部的微相分离发生:富含A单体的微区和富含B单体的微区出现。 由微畴形成的纳米尺寸的图案被称为非晶相。 研究者开发了奇异极限方法来研究空间中的点、曲线和表面的形态相,这些形态相可能不会被现有的自由能方法发现。 这些方法将复杂的非线性、非局部、变分和偏微分方程问题简化为简单的几何问题。 他们分析了饱和现象:一个过程的伸长,变形,并打破了少数大对象,以形成大量的小对象。 它们还解释了局部-非局部竞争或拓扑约束引起的形态学相位缺陷。 在嵌段共聚物囊泡的情况下,研究人员研究了自由能中的弯曲刚度.将奇异极限方法推广到不含变分结构的问题,如Gierer-Meinhardt系统在生物形态发生发育中的应用。 嵌段共聚物是一种与结晶固体不同的软凝聚材料,其特征是分子尺度上的流体无序性和较长尺度上的高度有序性。 现代纳米技术可以设计出几乎无限数量的分子结构,从而生产出具有特殊机械、电学、阻隔、离子和其他物理性质的材料。 普通的盒式胶带使用三嵌段共聚物来实现压敏粘合。嵌段共聚物在道路建设中与沥青混合,以减少在低温和高温极端条件下的路面开裂和车辙。 在这个项目中,研究人员研究了嵌段共聚物中的图案形成,这些图案形成与材料的形态相的变化有关,因此与更大规模的材料特性有关。 该项目包括研究生,他们发展数学和材料科学方面的技能和知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofeng Ren其他文献
COUNTING PEAKS OF SOLUTIONS TO SOME QUASILINEAR ELLIPTIC EQUATIONS WITH LARGE EXPONENTS
一些大指数拟线性椭圆方程解的峰值计数
- DOI:
10.1006/jdeq.1995.1047 - 发表时间:
1995 - 期刊:
- 影响因子:2.4
- 作者:
Xiaofeng Ren;Juncheng Wei - 通讯作者:
Juncheng Wei
On the \(\Gamma \)-Convergence Theory and Its Application to Block Copolymer Morphology
论(Gamma )-收敛理论及其在嵌段共聚物形态学中的应用
- DOI:
10.1007/978-1-4614-6345-0_2 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Xiaofeng Ren - 通讯作者:
Xiaofeng Ren
Pattern Formation in the Nonlocal Bistable Equation
非局部双稳态方程中的模式形成
- DOI:
10.4310/maa.2001.v8.n3.a1 - 发表时间:
2001 - 期刊:
- 影响因子:0.3
- 作者:
Xiaofeng Ren;Adam J. J. Chmaj - 通讯作者:
Adam J. J. Chmaj
Stationary and Dynamic Solutions of the Nonlocal Bistable Equation
非局部双稳态方程的定解和动态解
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Adam J. J. Chmaj;Xiaofeng Ren - 通讯作者:
Xiaofeng Ren
The soliton-stripe pattern in the Seul–Andelman membrane☆
Seul-Andelman 膜中的孤子条纹图案☆
- DOI:
10.1016/j.physd.2003.07.012 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Xiaofeng Ren;Juncheng Wei - 通讯作者:
Juncheng Wei
Xiaofeng Ren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaofeng Ren', 18)}}的其他基金
Inhibitory Long Range Interaction in Pattern Forming Physical and Biological Systems
模式形成物理和生物系统中的抑制性远距离相互作用
- 批准号:
2307068 - 财政年份:2023
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
Reconstruct Morphological Phases from Nonlocal Geometric Systems
从非局部几何系统重建形态相
- 批准号:
1714371 - 财政年份:2017
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
Multi-constituent inhibitory systems with self-organizing properties
具有自组织特性的多成分抑制系统
- 批准号:
1311856 - 财政年份:2013
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
A study of morphologies in block copolymers and Langmuir films
嵌段共聚物和 Langmuir 薄膜的形貌研究
- 批准号:
0754066 - 财政年份:2007
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
A study of morphologies in block copolymers and Langmuir films
嵌段共聚物和 Langmuir 薄膜的形貌研究
- 批准号:
0509725 - 财政年份:2005
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlocal Equations Modeling Fine- scale Structures in Solids
数学科学:固体精细结构的非局部方程建模
- 批准号:
9703727 - 财政年份:1997
- 资助金额:
$ 20.16万 - 项目类别:
Standard Grant
相似海外基金
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Research Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Continuing Grant
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
- 批准号:
EP/Y020839/1 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Research Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
- 批准号:
2340481 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Continuing Grant
Pushing the limits of electronic delocalization in organic molecules
突破有机分子电子离域的极限
- 批准号:
DE240100664 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Discovery Early Career Researcher Award
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
- 批准号:
EP/Z532836/1 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Research Grant
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
- 批准号:
EP/Z000394/1 - 财政年份:2024
- 资助金额:
$ 20.16万 - 项目类别:
Research Grant