A study of morphologies in block copolymers and Langmuir films
嵌段共聚物和 Langmuir 薄膜的形貌研究
基本信息
- 批准号:0509725
- 负责人:
- 金额:$ 10.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2008-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Morphology patterns that appear in complex materials areintimately related to their physical properties. Examples includelamellar, cylindrical, and spherical patterns in block copolymers,neutral and charged Langmuir monolayers, and smectic liquidcrystal films. The investigator and his collaborators analyze andpredict morphology patterns based on mathematical models derivedfrom first principles of statistical physics. They developtechniques to deal with nonlocal constitutive relations, singularperturbations, and critical eigenvalues. These mathematicalphenomena are proved to be the reasons behind self-organizationand pattern formation. The investigator finds effective reductionmethods that accurately simplify the original infinite-dimensionalproblems to manageable finite-dimensional ones. The investigatoralso studies the dynamic phenomenon of pattern nucleation inmaterials by finding and characterizing some unstable solutions tothe Euler-Lagrange equations of the free energy. The projectexpands our knowledge of singularly perturbed variationalproblems. It enhances classical theories such as Gammaconvergence. Complex materials, such as block copolymers, are usedeverywhere. The polyurethane foams used in upholstery and beddingare composed of multi-block copolymers known as thermoplasticelastomers that combine high temperature resilience and lowtemperature flexibility. Common box tapes use triblock copolymersto achieve pressure-sensitive adhesion. Block copolymers areblended with asphalt in road construction to reduce pavementcracking and rutting at low and high temperature extremes. Thisproject seeks to deepen our understanding of the mathematicaltheories underlying these systems. It produces effective methodsthat characterize and predict the mechanical, optical, electrical,ionic, barrier, and other physical properties of these materials. They help today's synthetic chemistry technologies to produceexquisitely structured materials to meet an ever rising demandfrom civil infrastructure and manufacturing.
复杂材料中出现的形态图案与其物理性质密切相关。例子包括嵌段共聚物中的层状、圆柱状和球形图案,中性和带电的朗缪尔单分子膜,以及近晶液晶薄膜。这位研究人员和他的合作者根据统计物理学的基本原理建立的数学模型来分析和预测形态模式。他们发展了处理非局部本构关系、奇异摄动和临界本征值的技术。这些数学现象被证明是自组织和模式形成的原因。研究者找到了有效的归约方法,将原来的无限维问题精确地简化为可处理的有限维问题。通过寻找和刻画自由能欧拉-拉格朗日方程的一些不稳定解,研究了材料中花样成核的动力学现象。这个项目扩展了我们对奇异摄动变分问题的认识。它强化了伽马收敛等经典理论。复杂的材料,如嵌段共聚物,在任何地方都有使用。用于室内装饰和床上用品的聚氨酯泡沫塑料由多嵌段共聚物组成,称为热塑性弹性体,它结合了高温弹性和低温弹性。普通盒式胶带使用三嵌段共聚体来实现压敏粘合。嵌段共聚物在道路施工中与沥青混合,以减少路面在低温和高温极端情况下的开裂和车辙。这个项目试图加深我们对这些系统背后的数学理论的理解。它提供了有效的方法来表征和预测这些材料的机械、光学、电学、离子、势垒和其他物理性质。它们帮助今天的合成化学技术生产结构精致的材料,以满足民用基础设施和制造业日益增长的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofeng Ren其他文献
COUNTING PEAKS OF SOLUTIONS TO SOME QUASILINEAR ELLIPTIC EQUATIONS WITH LARGE EXPONENTS
一些大指数拟线性椭圆方程解的峰值计数
- DOI:
10.1006/jdeq.1995.1047 - 发表时间:
1995 - 期刊:
- 影响因子:2.4
- 作者:
Xiaofeng Ren;Juncheng Wei - 通讯作者:
Juncheng Wei
On the \(\Gamma \)-Convergence Theory and Its Application to Block Copolymer Morphology
论(Gamma )-收敛理论及其在嵌段共聚物形态学中的应用
- DOI:
10.1007/978-1-4614-6345-0_2 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Xiaofeng Ren - 通讯作者:
Xiaofeng Ren
Pattern Formation in the Nonlocal Bistable Equation
非局部双稳态方程中的模式形成
- DOI:
10.4310/maa.2001.v8.n3.a1 - 发表时间:
2001 - 期刊:
- 影响因子:0.3
- 作者:
Xiaofeng Ren;Adam J. J. Chmaj - 通讯作者:
Adam J. J. Chmaj
Stationary and Dynamic Solutions of the Nonlocal Bistable Equation
非局部双稳态方程的定解和动态解
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Adam J. J. Chmaj;Xiaofeng Ren - 通讯作者:
Xiaofeng Ren
The soliton-stripe pattern in the Seul–Andelman membrane☆
Seul-Andelman 膜中的孤子条纹图案☆
- DOI:
10.1016/j.physd.2003.07.012 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Xiaofeng Ren;Juncheng Wei - 通讯作者:
Juncheng Wei
Xiaofeng Ren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaofeng Ren', 18)}}的其他基金
Inhibitory Long Range Interaction in Pattern Forming Physical and Biological Systems
模式形成物理和生物系统中的抑制性远距离相互作用
- 批准号:
2307068 - 财政年份:2023
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant
Reconstruct Morphological Phases from Nonlocal Geometric Systems
从非局部几何系统重建形态相
- 批准号:
1714371 - 财政年份:2017
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant
Multi-constituent inhibitory systems with self-organizing properties
具有自组织特性的多成分抑制系统
- 批准号:
1311856 - 财政年份:2013
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant
Singular limits, saturation, and defects in block copolymer morphology
嵌段共聚物形态的奇异极限、饱和度和缺陷
- 批准号:
0907777 - 财政年份:2009
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant
A study of morphologies in block copolymers and Langmuir films
嵌段共聚物和 Langmuir 薄膜的形貌研究
- 批准号:
0754066 - 财政年份:2007
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlocal Equations Modeling Fine- scale Structures in Solids
数学科学:固体精细结构的非局部方程建模
- 批准号:
9703727 - 财政年份:1997
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant
相似海外基金
Polymer Nanocomposites using Discrete Nanoparticles and Bicontinuous Scaffolds: New Strategies for Connective Morphologies and Property Control
使用离散纳米粒子和双连续支架的聚合物纳米复合材料:连接形态和性能控制的新策略
- 批准号:
2407300 - 财政年份:2024
- 资助金额:
$ 10.09万 - 项目类别:
Continuing Grant
Three-dimensional Confocal Microscopy Visualization and AFM-IR Chemical Mapping of Lung Surfactant Monolayer Collapse Morphologies
肺表面活性剂单层塌陷形态的三维共焦显微镜可视化和 AFM-IR 化学图谱
- 批准号:
10751972 - 财政年份:2023
- 资助金额:
$ 10.09万 - 项目类别:
Polypropylene components with improved mechanical properties through adjustment of the morphologies (T10# (Antr.T04))
通过调整形态改善机械性能的聚丙烯组件(T10
- 批准号:
517516156 - 财政年份:2023
- 资助金额:
$ 10.09万 - 项目类别:
Collaborative Research Centres (Transfer Project)
21ENGBIO: Bioinspired manufacturing of non-Euclidean morphologies
21ENGBIO:非欧几里得形态的仿生制造
- 批准号:
BB/W012715/1 - 财政年份:2022
- 资助金额:
$ 10.09万 - 项目类别:
Research Grant
Diamond growth and resorption morphologies reveal the record of mantle fluids and melts
钻石的生长和吸收形态揭示了地幔流体和熔体的记录
- 批准号:
RGPIN-2020-06718 - 财政年份:2022
- 资助金额:
$ 10.09万 - 项目类别:
Discovery Grants Program - Individual
Generating Materials with Complex, Life-like Morphologies
生成具有复杂、逼真形态的材料
- 批准号:
2741927 - 财政年份:2022
- 资助金额:
$ 10.09万 - 项目类别:
Studentship
Stain-free 3D mapping of polymer-blend morphologies
聚合物共混物形态的免污染 3D 绘图
- 批准号:
21K18816 - 财政年份:2021
- 资助金额:
$ 10.09万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Diamond growth and resorption morphologies reveal the record of mantle fluids and melts
钻石的生长和吸收形态揭示了地幔流体和熔体的记录
- 批准号:
RGPIN-2020-06718 - 财政年份:2021
- 资助金额:
$ 10.09万 - 项目类别:
Discovery Grants Program - Individual
Evolution of galaxy morphologies
星系形态的演化
- 批准号:
564584-2021 - 财政年份:2021
- 资助金额:
$ 10.09万 - 项目类别:
University Undergraduate Student Research Awards
Diamond growth and resorption morphologies reveal the record of mantle fluids and melts
钻石的生长和吸收形态揭示了地幔流体和熔体的记录
- 批准号:
RGPIN-2020-06718 - 财政年份:2020
- 资助金额:
$ 10.09万 - 项目类别:
Discovery Grants Program - Individual