Multi-constituent inhibitory systems with self-organizing properties
具有自组织特性的多成分抑制系统
基本信息
- 批准号:1311856
- 负责人:
- 金额:$ 14.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates several important binary and ternary systems with self-organizing properties, with an emphasis on ternary systems and the longer ranging confinement mechanism through nonlocal interaction or inhibitor variables. One intriguing feature that sets ternary systems apart from binary systems is the triple junction phenomenon. The three constituents of the system may meet at a point in the two dimensional case or at a curve in the three dimensional case. The PI proposes to show the existence of a double bubble assembly pattern, where the triple junction phenomenon occurs in each double bubble. Two novel techniques, restricted perturbation classes and internal variables, will be used in the proof. The second feature in ternary systems is the complexity of the long range interaction manifested in a two by two matrix of parameters. For instance it will be shown that the core-shell pattern appears only if the 2-2 entry is greater than the 1-2 entry of the matrix. When multi-constituent inhibitory systems appear in a curved space, such as a vesicle of lipid membranes, the role played by the Riemann curvature will also be investigated. Patterns and their possible defects will be shown as a balance and compromise of growth, inhibition, and curvature. Exquisitely structured patterns arise in many multi-constituent physical and biological systems as orderly outcomes of self-organization principles. Examples include morphological phases in block copolymers, animal coats, and skin pigmentation. Common in these pattern-forming systems is that a deviation from homogeneity has a strong positive feedback on its further increase. On its own, it would lead to an unlimited increase and spreading. Pattern formation requires in addition a longer ranging confinement of the locally self-enhancing process. This project derives geometrical patterns from self-organization principles in various binary and ternary physical and biological systems. Analysis of these geometric structures is a fundamental step in understanding the mechanical, optical, electrical, ionic, barrier and other properties of these systems. This project supports a culturally diverse environment that fosters critical and independent thinking both in classroom and research settings in the ethnically diverse metropolitan area of Washington, DC. It produces mathematics of depth and beauty, and offers profound insights into the natural world.
该项目研究了几个重要的二元和三元系统的自组织特性,重点是三元系统和更长范围的限制机制,通过非局部相互作用或抑制剂变量。三元体系与二元体系的一个有趣的区别是三元结现象。系统的三个组成部分可以在二维情况下在一点处相遇,或者在三维情况下在一条曲线处相遇。PI建议显示双气泡组装模式的存在,其中在每个双气泡中发生三重连接现象。两个新的技术,限制扰动类和内部变量,将用于证明。三元体系的第二个特征是长程相互作用的复杂性,表现在二乘二的参数矩阵中。例如,它将表明,只有当矩阵的2-2项大于1-2项时,核壳模式才会出现。当多组分抑制系统出现在一个弯曲的空间,如脂膜囊泡,黎曼曲率所发挥的作用也将被调查。模式及其可能的缺陷将显示为生长,抑制和曲率的平衡和妥协。在许多多成分的物理和生物系统中,作为自组织原理的有序结果,出现了结构精美的模式。实例包括嵌段共聚物中的形态相、动物皮毛和皮肤色素沉着。这些模式形成系统的共同点是,偏离均匀性会对进一步增加产生强烈的正反馈。它本身会导致无限的增长和蔓延。图案形成还需要局部自增强过程的更长范围的限制。这个项目从各种二元和三元物理和生物系统的自组织原理中推导出几何图案。分析这些几何结构是理解这些系统的机械、光学、电学、离子、势垒和其他性质的基本步骤。这个项目支持一个文化多样的环境,促进批判性和独立思考,无论是在课堂上和研究设置在种族多元化的大都会地区的华盛顿,DC。 它产生了深度和美丽的数学,并提供了对自然世界的深刻见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofeng Ren其他文献
COUNTING PEAKS OF SOLUTIONS TO SOME QUASILINEAR ELLIPTIC EQUATIONS WITH LARGE EXPONENTS
一些大指数拟线性椭圆方程解的峰值计数
- DOI:
10.1006/jdeq.1995.1047 - 发表时间:
1995 - 期刊:
- 影响因子:2.4
- 作者:
Xiaofeng Ren;Juncheng Wei - 通讯作者:
Juncheng Wei
On the \(\Gamma \)-Convergence Theory and Its Application to Block Copolymer Morphology
论(Gamma )-收敛理论及其在嵌段共聚物形态学中的应用
- DOI:
10.1007/978-1-4614-6345-0_2 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Xiaofeng Ren - 通讯作者:
Xiaofeng Ren
Pattern Formation in the Nonlocal Bistable Equation
非局部双稳态方程中的模式形成
- DOI:
10.4310/maa.2001.v8.n3.a1 - 发表时间:
2001 - 期刊:
- 影响因子:0.3
- 作者:
Xiaofeng Ren;Adam J. J. Chmaj - 通讯作者:
Adam J. J. Chmaj
Stationary and Dynamic Solutions of the Nonlocal Bistable Equation
非局部双稳态方程的定解和动态解
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Adam J. J. Chmaj;Xiaofeng Ren - 通讯作者:
Xiaofeng Ren
The soliton-stripe pattern in the Seul–Andelman membrane☆
Seul-Andelman 膜中的孤子条纹图案☆
- DOI:
10.1016/j.physd.2003.07.012 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Xiaofeng Ren;Juncheng Wei - 通讯作者:
Juncheng Wei
Xiaofeng Ren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaofeng Ren', 18)}}的其他基金
Inhibitory Long Range Interaction in Pattern Forming Physical and Biological Systems
模式形成物理和生物系统中的抑制性远距离相互作用
- 批准号:
2307068 - 财政年份:2023
- 资助金额:
$ 14.97万 - 项目类别:
Standard Grant
Reconstruct Morphological Phases from Nonlocal Geometric Systems
从非局部几何系统重建形态相
- 批准号:
1714371 - 财政年份:2017
- 资助金额:
$ 14.97万 - 项目类别:
Standard Grant
Singular limits, saturation, and defects in block copolymer morphology
嵌段共聚物形态的奇异极限、饱和度和缺陷
- 批准号:
0907777 - 财政年份:2009
- 资助金额:
$ 14.97万 - 项目类别:
Standard Grant
A study of morphologies in block copolymers and Langmuir films
嵌段共聚物和 Langmuir 薄膜的形貌研究
- 批准号:
0754066 - 财政年份:2007
- 资助金额:
$ 14.97万 - 项目类别:
Standard Grant
A study of morphologies in block copolymers and Langmuir films
嵌段共聚物和 Langmuir 薄膜的形貌研究
- 批准号:
0509725 - 财政年份:2005
- 资助金额:
$ 14.97万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlocal Equations Modeling Fine- scale Structures in Solids
数学科学:固体精细结构的非局部方程建模
- 批准号:
9703727 - 财政年份:1997
- 资助金额:
$ 14.97万 - 项目类别:
Standard Grant
相似海外基金
One-step reconstruction of plastic waste back to its constituent monomers (ONESTEP)
将塑料废物一步重建回其组成单体(ONESTEP)
- 批准号:
EP/Y003934/1 - 财政年份:2024
- 资助金额:
$ 14.97万 - 项目类别:
Research Grant
Transporter Elucidation Center at the University of California, San Francisco
加州大学旧金山分校转运蛋白阐明中心
- 批准号:
10747230 - 财政年份:2023
- 资助金额:
$ 14.97万 - 项目类别:
Nitro-nitrate fatty acid derivatives as novel cGMP-dependent and cGMP-independent signaling mediators
硝基硝酸脂肪酸衍生物作为新型 cGMP 依赖性和 cGMP 独立信号传导介质
- 批准号:
10583877 - 财政年份:2023
- 资助金额:
$ 14.97万 - 项目类别:
Project 2: Oxidative Stress and Harmful Constituent Levels Associated with Little Cigars
项目 2:与小雪茄相关的氧化应激和有害成分水平
- 批准号:
10665897 - 财政年份:2023
- 资助金额:
$ 14.97万 - 项目类别:
Prospective Associations of Diet and Late-Onset Alzheimer's Disease and Related Dementias Among Five Racial and Ethnic Populations
五个种族和民族人群中饮食与迟发性阿尔茨海默病及相关痴呆症的前瞻性关联
- 批准号:
10809518 - 财政年份:2023
- 资助金额:
$ 14.97万 - 项目类别:
DEVELOPMENT OF AN IN-HOUSE PROTON SPIN NETWORK DATABASE TO CHARACTERIZE THE PHARMACOPHORES OF CENTELLA ASIATICA FOR STANDARDIZATION AND QUALITY CONTROL
开发内部质子自旋网络数据库来表征积雪草药效团,以实现标准化和质量控制
- 批准号:
10706478 - 财政年份:2022
- 资助金额:
$ 14.97万 - 项目类别:
Constituent power in federal constitutions
联邦宪法中的制宪权
- 批准号:
DP220100967 - 财政年份:2022
- 资助金额:
$ 14.97万 - 项目类别:
Discovery Projects
The mechanism of systemic nutrient metabolism through the maintenance of small intestinal structure and intestinal environment by the interaction of small intestinal constituent cells
小肠组成细胞相互作用维持小肠结构和肠道环境,从而实现全身营养代谢的机制
- 批准号:
22K19705 - 财政年份:2022
- 资助金额:
$ 14.97万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
DEVELOPMENT OF AN IN-HOUSE PROTON SPIN NETWORK DATABASE TO CHARACTERIZE THE PHARMACOPHORES OF CENTELLA ASIATICA FOR STANDARDIZATION AND QUALITY CONTROL
开发内部质子自旋网络数据库来表征积雪草药效团,以实现标准化和质量控制
- 批准号:
10415273 - 财政年份:2022
- 资助金额:
$ 14.97万 - 项目类别: