DynSyst_Special_Topics: Polynomial Dynamical s Systems Over Finite Fields: From Structure to Dynamics

DynSyst_Special_Topics:有限域上的多项式动力学系统:从结构到动力学

基本信息

项目摘要

Progress in our understanding of increasingly complex engineered and natural systems depends crucially on the use of mathematical models as the basis for computational analysis and prediction. Such models allow the simulation on a computer of dynamic processes that are driven by several different interacting forces. This is true in particular for systems studied in the life sciences, which form the basis for advances in biomedicine and bioengineering. Molecular networks inside human cells which process external signals and drive cellular metabolism provide important examples of such processes. Relatively little is currently known about the design principles of such networks. One approach to gaining increased understanding is to study properties of the mathematical models that capture their key features. An understanding of the relationship between structural features of the models and the constraints these features put on model dynamics will allow the formulation of hypotheses about design features of biological networks based on observed dynamics. These hypotheses can then be tested in the laboratory. The goal of this project is to study the relationship between structure and dynamics for a type of model that has proven to be very useful in capturing key features of a variety of intracellular molecular networks. Beyond molecular networks, aspects of this model type have been used in electrical engineering and computer science, so this project might have an impact beyond the life sciences. Time-discrete dynamical systems models are ubiquitous not only in engineering but also the life sciences. Especially during the last decade finite dynamical systems, that is, time-discrete dynamical systems with a finite state space, have been used increasingly in systems biology to model a variety of biochemical networks, such as gene regulatory networks and signal transduction networks. In many cases, the available data quantity and quality is not sufficient to build detailed quantitative models such as systems of ordinary differential equations, which require many parameters that are frequently unknown. In addition, discrete models tend to be more intuitive and more easily accessible to life scientists. The premise of this project is that polynomial dynamical systems over finite fields form a unified, mathematically rich class of dynamical systems that are increasingly used in systems biology. The goal of the project is to establish results that relate their structure to their dynamics. To obtain strong results it is necessary to focus on specific families of such systems. The choice for this project is the class of Boolean networks constructed from so-called nested canalyzing functions, and their multi-state generalizations. Many regulatory mechanisms in molecular biology can be described by such functions, and the resulting networks have good dynamic properties.
我们对日益复杂的工程系统和自然系统的理解的进步,关键取决于使用数学模型作为计算分析和预测的基础。这种模型允许在计算机上模拟由几种不同的相互作用的力驱动的动态过程。对于生命科学中研究的系统来说尤其如此,生命科学是生物医学和生物工程进步的基础。人类细胞内处理外部信号并驱动细胞代谢的分子网络提供了这种过程的重要例子。目前对这种网络的设计原理知之甚少。获得更多理解的一种方法是研究数学模型的特性,这些特性捕获了它们的关键特征。了解模型的结构特征和这些特征对模型动力学的约束之间的关系,将允许根据观察到的动力学来制定关于生物网络设计特征的假设。这些假设可以在实验室中进行测试。该项目的目标是研究一种模型的结构和动力学之间的关系,该模型已被证明在捕获各种细胞内分子网络的关键特征方面非常有用。除了分子网络之外,这种模型类型的各个方面已经用于电气工程和计算机科学,因此这个项目可能会产生生命科学之外的影响。时间离散动力系统模型不仅在工程领域,而且在生命科学领域都是普遍存在的。特别是在过去的十年中,有限动力系统,即具有有限状态空间的时间离散动力系统,已越来越多地用于系统生物学中的各种生化网络,如基因调控网络和信号转导网络的建模。 在许多情况下,现有数据的数量和质量不足以建立详细的定量模型,如常微分方程组,这需要许多经常未知的参数。此外,离散模型往往更直观,更容易为生命科学家所用。这个项目的前提是有限域上的多项式动力系统形成了一个统一的,数学上丰富的动力系统,越来越多地用于系统生物学。该项目的目标是确定将其结构与其动态联系起来的结果。为了获得强有力的结果,有必要把重点放在这些系统的特定家庭。这个项目的选择是从所谓的嵌套canalyzing函数构造的布尔网络类,以及它们的多态推广。分子生物学中的许多调节机制都可以用这样的函数来描述,并且由此产生的网络具有良好的动态特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reinhard Laubenbacher其他文献

“Voici ce que j’ai trouvé:” Sophie Germain’s grand plan to prove Fermat’s Last Theorem
  • DOI:
    10.1016/j.hm.2009.12.002
  • 发表时间:
    2010-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Reinhard Laubenbacher;David Pengelley
  • 通讯作者:
    David Pengelley
Immune digital twins for complex human pathologies: applications, limitations, and challenges
用于复杂人类病理学的免疫数字双胞胎:应用、局限性和挑战
  • DOI:
    10.1038/s41540-024-00450-5
  • 发表时间:
    2024-11-30
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Anna Niarakis;Reinhard Laubenbacher;Gary An;Yaron Ilan;Jasmin Fisher;Åsmund Flobak;Kristin Reiche;María Rodríguez Martínez;Liesbet Geris;Luiz Ladeira;Lorenzo Veschini;Michael L. Blinov;Francesco Messina;Luis L. Fonseca;Sandra Ferreira;Arnau Montagud;Vincent Noël;Malvina Marku;Eirini Tsirvouli;Marcella M. Torres;Leonard A. Harris;T. J. Sego;Chase Cockrell;Amanda E. Shick;Hasan Balci;Albin Salazar;Kinza Rian;Ahmed Abdelmonem Hemedan;Marina Esteban-Medina;Bernard Staumont;Esteban Hernandez-Vargas;Shiny Martis B;Alejandro Madrid-Valiente;Panagiotis Karampelesis;Luis Sordo Vieira;Pradyumna Harlapur;Alexander Kulesza;Niloofar Nikaein;Winston Garira;Rahuman S. Malik Sheriff;Juilee Thakar;Van Du T. Tran;Jose Carbonell-Caballero;Soroush Safaei;Alfonso Valencia;Andrei Zinovyev;James A. Glazier
  • 通讯作者:
    James A. Glazier
Generic Cohen-Macaulay Monomial Ideals
  • DOI:
    10.1007/s00026-004-0204-8
  • 发表时间:
    2004-05-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Abdul Salam Jarrah;Reinhard Laubenbacher
  • 通讯作者:
    Reinhard Laubenbacher
Modular Control of Biological Networks
生物网络的模块化控制
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Murrugarra;Alan Veliz;Elena Dimitrova;C. Kadelka;Matthew Wheeler;Reinhard Laubenbacher
  • 通讯作者:
    Reinhard Laubenbacher
Boolean Monomial Dynamical Systems
  • DOI:
    10.1007/s00026-004-0230-6
  • 发表时间:
    2005-01-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Omar Colón-Reyes;Reinhard Laubenbacher;Bodo Pareigis
  • 通讯作者:
    Bodo Pareigis

Reinhard Laubenbacher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Reinhard Laubenbacher', 18)}}的其他基金

EAGER: Modular design of multiscale models, with an application to the innate immune response to fungal respiratory pathogens
EAGER:多尺度模型的模块化设计,应用于对真菌呼吸道病原体的先天免疫反应
  • 批准号:
    1750183
  • 财政年份:
    2018
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Standard Grant
REU Site: Modeling and Simulation in Systems Biology
REU 网站:系统生物学建模与仿真
  • 批准号:
    1460967
  • 财政年份:
    2015
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: PlantSimLab: A Simulation Laboratory for Plant Biology
合作研究:ABI 创新:PlantSimLab:植物生物学模拟实验室
  • 批准号:
    1146819
  • 财政年份:
    2012
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Standard Grant
REU Site: Modeling and simulation of biological networks
REU 站点:生物网络的建模和仿真
  • 批准号:
    0755322
  • 财政年份:
    2008
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Continuing Grant
Mathematical Algorithms for Computer Simulation
计算机模拟的数学算法
  • 批准号:
    0511441
  • 财政年份:
    2005
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Standard Grant
Algebraic algorithms for Cell Complexes: Incubation Activity
细胞复合体的代数算法:孵化活动
  • 批准号:
    0138323
  • 财政年份:
    2002
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Standard Grant
BIOCOMPLEXITY--INCUBATION ACTIVITY: The Mathematics of Network Dynamics in Biological, Social, and Economic Systems
生物复杂性——孵化活动:生物、社会和经济系统中网络动力学的数学
  • 批准号:
    0083595
  • 财政年份:
    2000
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Standard Grant
Mathematical Sciences REU Site: Computationalc Geometry Algebraic Geometry
数学科学 REU 网站:计算几何代数几何
  • 批准号:
    9415268
  • 财政年份:
    1994
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Standard Grant
Teaching With Original Sources in Mathematics
使用数学原始资料进行教学
  • 批准号:
    9354330
  • 财政年份:
    1994
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Standard Grant

相似海外基金

Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
  • 批准号:
    2401482
  • 财政年份:
    2024
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Continuing Grant
New Frontiers in Large-Scale Polynomial Optimisation
大规模多项式优化的新领域
  • 批准号:
    DE240100674
  • 财政年份:
    2024
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
  • 批准号:
    2331401
  • 财政年份:
    2024
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
  • 批准号:
    2331400
  • 财政年份:
    2024
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Standard Grant
CAREER: Low-Degree Polynomial Perspectives on Complexity
职业:复杂性的低次多项式视角
  • 批准号:
    2338091
  • 财政年份:
    2024
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Continuing Grant
CNS Core: Small: Schedulability Analysis of Safety-Critical Real-Time Systems: Beyond Pseudo-polynomial Time Algorithms
CNS 核心:小型:安全关键实时系统的可调度性分析:超越伪多项式时间算法
  • 批准号:
    2141256
  • 财政年份:
    2022
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Standard Grant
Exact linear algebra, polynomial systems and applications of computer algebra
精确线性代数、多项式系统及计算机代数应用
  • 批准号:
    RGPIN-2020-04276
  • 财政年份:
    2022
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Discovery Grants Program - Individual
New Polynomial GCD and Factorization Algorithms and Software for Maple
Maple 的新多项式 GCD 和因式分解算法和软件
  • 批准号:
    576162-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Alliance Grants
Global geometry of families of polynomial vector fields
多项式向量场族的全局几何
  • 批准号:
    RGPIN-2020-05145
  • 财政年份:
    2022
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Discovery Grants Program - Individual
Pushing the limits of computer algebra: From the integer resolution of polynomial systems to the computation of topological closures
突破计算机代数的极限:从多项式系统的整数分辨率到拓扑闭包的计算
  • 批准号:
    RGPIN-2018-06534
  • 财政年份:
    2022
  • 资助金额:
    $ 27.79万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了