Mathematical Algorithms for Computer Simulation

计算机模拟的数学算法

基本信息

项目摘要

The project focuses on the development of a mathematical foundationfor interaction-based computer simulations that can be represented as deterministic, discrete-time dynamical systems onfinite state sets. Here, an interaction-based simulation isconsidered to be a collection of variables, each equipped with an update function or a set of rules which is used to compute the stateof that variable at the next time step, based on the states of allthe other variables. Thus, the description of the system is givenvia local interactions, and global dynamics is generated throughthe simultaneous iteration of all local update functions. Cellular automataand Boolean networks are examples such simulations. An importantquestion, that has been studied extensively in the framework ofcellular automata is how one can predict global dynamical features ofsuch systems from the structure of the local update functions. By assuming that the state set for each variable is a finite field,such as the field with two elements used typically for cellularautomata,this problem can be addressed within the framework of computationalalgebra. The algorithms developed in this project will become part ofa symbolic computation software package for finite dynamical systems,implemented in the computer algebra system Macaulay2. Interaction-based simulation is becoming increasingly important in theanalysis of large biological, epidemiological, and socio-technical networks, such as the immune system, the spread of infectious diseasesin urban areas, or road traffic and wireless communications networks. Typically, such networks are understood at the level of individualinteractions, but global information tends to be sparse. The softwaredesign of such systems is very challenging, and so is theanalysis of simulation output, due to the size and complexity of thesimulated systems. A mathematical foundation for such simulationswill provide tools for the design of large-scale simulations. Itwill also help to systematically answer questions aboutbiological and other systems, such as optimal ways to treat infectious diseases,or how to contain their spread in large populations.
该项目专注于为基于交互的计算机模拟开发一个数学基础,该模拟可以表示为有限状态集上的确定性、离散时间动态系统。这里,基于交互的模拟被认为是变量的集合,每个变量都配备了一个更新函数或一组规则,用于基于所有其他变量的状态来计算该变量在下一个时间步长的状态。因此,通过局部相互作用给出系统的描述,通过所有局部更新函数的同时迭代产生全局动态。元胞自动机和布尔网络就是这样的模拟。一个在元胞自动机框架内被广泛研究的重要问题是如何根据局部更新函数的结构来预测这类系统的全局动力学特征。通过假设每个变量的状态集是一个有限域,例如通常用于元胞自动机的具有两个元素的域,这个问题可以在计算代数的框架内得到解决。在这个项目中开发的算法将成为有限动力系统符号计算软件包的一部分,该软件包在计算机代数系统Macaulay2中实现。基于交互作用的模拟在分析大型生物、流行病学和社会技术网络,如免疫系统、传染病在城市地区的传播,或道路交通和无线通信网络方面正变得越来越重要。通常,这样的网络是在个人互动的层面上被理解的,但全球信息往往是稀疏的。由于仿真系统的规模和复杂性,这类系统的软件设计和仿真输出的分析都是非常具有挑战性的。这类模拟的数学基础将为设计大规模模拟提供工具。它还将有助于系统地回答有关生物和其他系统的问题,例如治疗传染病的最佳方法,或如何控制其在大量人口中的传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reinhard Laubenbacher其他文献

“Voici ce que j’ai trouvé:” Sophie Germain’s grand plan to prove Fermat’s Last Theorem
  • DOI:
    10.1016/j.hm.2009.12.002
  • 发表时间:
    2010-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Reinhard Laubenbacher;David Pengelley
  • 通讯作者:
    David Pengelley
Immune digital twins for complex human pathologies: applications, limitations, and challenges
用于复杂人类病理学的免疫数字双胞胎:应用、局限性和挑战
  • DOI:
    10.1038/s41540-024-00450-5
  • 发表时间:
    2024-11-30
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Anna Niarakis;Reinhard Laubenbacher;Gary An;Yaron Ilan;Jasmin Fisher;Åsmund Flobak;Kristin Reiche;María Rodríguez Martínez;Liesbet Geris;Luiz Ladeira;Lorenzo Veschini;Michael L. Blinov;Francesco Messina;Luis L. Fonseca;Sandra Ferreira;Arnau Montagud;Vincent Noël;Malvina Marku;Eirini Tsirvouli;Marcella M. Torres;Leonard A. Harris;T. J. Sego;Chase Cockrell;Amanda E. Shick;Hasan Balci;Albin Salazar;Kinza Rian;Ahmed Abdelmonem Hemedan;Marina Esteban-Medina;Bernard Staumont;Esteban Hernandez-Vargas;Shiny Martis B;Alejandro Madrid-Valiente;Panagiotis Karampelesis;Luis Sordo Vieira;Pradyumna Harlapur;Alexander Kulesza;Niloofar Nikaein;Winston Garira;Rahuman S. Malik Sheriff;Juilee Thakar;Van Du T. Tran;Jose Carbonell-Caballero;Soroush Safaei;Alfonso Valencia;Andrei Zinovyev;James A. Glazier
  • 通讯作者:
    James A. Glazier
Generic Cohen-Macaulay Monomial Ideals
  • DOI:
    10.1007/s00026-004-0204-8
  • 发表时间:
    2004-05-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Abdul Salam Jarrah;Reinhard Laubenbacher
  • 通讯作者:
    Reinhard Laubenbacher
Modular Control of Biological Networks
生物网络的模块化控制
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Murrugarra;Alan Veliz;Elena Dimitrova;C. Kadelka;Matthew Wheeler;Reinhard Laubenbacher
  • 通讯作者:
    Reinhard Laubenbacher
Boolean Monomial Dynamical Systems
  • DOI:
    10.1007/s00026-004-0230-6
  • 发表时间:
    2005-01-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Omar Colón-Reyes;Reinhard Laubenbacher;Bodo Pareigis
  • 通讯作者:
    Bodo Pareigis

Reinhard Laubenbacher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Reinhard Laubenbacher', 18)}}的其他基金

EAGER: Modular design of multiscale models, with an application to the innate immune response to fungal respiratory pathogens
EAGER:多尺度模型的模块化设计,应用于对真菌呼吸道病原体的先天免疫反应
  • 批准号:
    1750183
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
REU Site: Modeling and Simulation in Systems Biology
REU 网站:系统生物学建模与仿真
  • 批准号:
    1460967
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: PlantSimLab: A Simulation Laboratory for Plant Biology
合作研究:ABI 创新:PlantSimLab:植物生物学模拟实验室
  • 批准号:
    1146819
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
DynSyst_Special_Topics: Polynomial Dynamical s Systems Over Finite Fields: From Structure to Dynamics
DynSyst_Special_Topics:有限域上的多项式动力学系统:从结构到动力学
  • 批准号:
    0908201
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
REU Site: Modeling and simulation of biological networks
REU 站点:生物网络的建模和仿真
  • 批准号:
    0755322
  • 财政年份:
    2008
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Algebraic algorithms for Cell Complexes: Incubation Activity
细胞复合体的代数算法:孵化活动
  • 批准号:
    0138323
  • 财政年份:
    2002
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
BIOCOMPLEXITY--INCUBATION ACTIVITY: The Mathematics of Network Dynamics in Biological, Social, and Economic Systems
生物复杂性——孵化活动:生物、社会和经济系统中网络动力学的数学
  • 批准号:
    0083595
  • 财政年份:
    2000
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Mathematical Sciences REU Site: Computationalc Geometry Algebraic Geometry
数学科学 REU 网站:计算几何代数几何
  • 批准号:
    9415268
  • 财政年份:
    1994
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Teaching With Original Sources in Mathematics
使用数学原始资料进行教学
  • 批准号:
    9354330
  • 财政年份:
    1994
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
  • 批准号:
    2338171
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
SCH: Computer Vision Algorithms to Detect Tics In Patients with Tourette Syndrome
SCH:用于检测抽动秽语综合征患者抽动的计算机视觉算法
  • 批准号:
    10817272
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Developing computer vision algorithms for ferrous scrap and secondary materials grading using images and videos as input, incorporating them into digital passports for increasing UK usage of domestically generated scrap.
使用图像和视频作为输入,开发用于黑色金属废料和二次材料分级的计算机视觉算法,并将其纳入数字护照中,以增加英国对国内产生的废料的使用。
  • 批准号:
    10076415
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant for R&D
An Innovative and Personalised Physiotherapy Exercise Technique Feedback Application Using Computer Vision Algorithms
使用计算机视觉算法的创新和个性化理疗运动技术反馈应用
  • 批准号:
    10045741
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant for R&D
International Catalyst on Computer-Aided Design Algorithms for Quantum Annealing
量子退火计算机辅助设计算法国际催化剂
  • 批准号:
    580837-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Alliance Grants
Computer Arithmetic for Cryptography and Reliable Security: Algorithms and Architectures
密码学和可靠安全的计算机算法:算法和架构
  • 批准号:
    RGPIN-2020-05798
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
ACESO: Computer Vision Algorithms for Computer-Assisted Surgical Systems
ACESO:计算机辅助手术系统的计算机视觉算法
  • 批准号:
    567101-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Alliance Grants
Computer Vision-Based Deep Learning Algorithms for Detecting Marine Life and Physical Phenomena from Acoustic Backscatter Time Series
基于计算机视觉的深度学习算法,用于从声学反向散射时间序列中检测海洋生物和物理现象
  • 批准号:
    576751-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Alliance Grants
Computer Algebra: Algorithms and Applications
计算机代数:算法与应用
  • 批准号:
    RGPIN-2018-06670
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了