Research Proposal in Algebraic Geometry and String Theory
代数几何和弦理论的研究计划
基本信息
- 批准号:0908487
- 负责人:
- 金额:$ 48.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This proposal explores several areas where algebraic geometry interacts with quantum field theory and string theory: the Geometric Langlands Program, on the math side; heterotic string phenomenology and F theory, in physics; and the superstring measure, an algebraic geometry project motivated by physics. The recent breakthrough in producing a Heterotic Standard Model is a perfect illustration of the power of algebraic geometry at the service of physics. Using techniques for construction of non simply connected Calabi-Yau threefolds and of bundles on them satisfying various constraints on their chern classes and cohomology, the PI produced the only known example of a heterotic string compactification which has exactly the Minimal Supersymmetric Standard Model (MSSM) spectrum of particles and forces, with no unwanted exotic matter. A systematic study is proposed of the High Country region of the string Landscape, where the Heterotic Standard Models live. This includes investigation of all known non simply connected Calabi-Yau threefolds, incorporating a classification of all Standard Model bundles on them and analysis of their mathematical and phenomenological properties. The apparent great scarcity of these Heterotic Standard Models motivates attempts to determine the rough size of the string High Country. The recent phenomenological breakthroughs based on F-theory underlie the urgency of constructing global, geometric models realizing the various known local models. The construction, at all genera, of the superstring measure is an important foundational issue in string theory. Recent proposals have converted this to a question in classical algebraic geometry, closely related to modular forms, the Schottky problem, and theta identities. The existing proposals do not quite work. Fortunately, it seems likely that the addition of some algebro-geometric ingredients may overcome the obstruction.The Geometric Langlands Conjecture is an old and central open problem in algebraic geometry and representation theory. In recent years it has also been of great interest to physicists, who have embedded it into the context of quantum field theory. The combination of their physical insights with recent breakthroughs in non abelian Hodge theory and older ideas from integrable systems offers the real possibility of a complete solution soon.F-theory and its duality to the heterotic string are another area where algebraic geometry is able to make powerful contributions to the physics. The PI also proposes to continue a wide range of educational activities, including curriculum development, the writing of a textbook, and extensive work with undergraduate and graduate students, aimed at the dissemination of new knowledge concerning the interactions of mathematics and high energy physics.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的,该提案探讨了代数几何与量子场论和弦论相互作用的几个领域:数学方面的几何朗兰兹计划;物理学方面的杂化弦现象学和F理论;超弦测量,一个由物理学激发的代数几何项目。最近在产生杂化标准模型方面的突破是代数几何为物理服务的力量的完美例证。利用构造非单连通的卡-丘三重结构和满足其chern类和上同调的各种约束的丛的技术,PI产生了唯一已知的杂合弦紧化的例子,它具有粒子和力的最小超对称标准模型(MSSM)谱,没有不必要的奇异物质。提出了一个系统的研究高国家地区的字符串景观,在那里的杂种优势标准模式的生活。这包括调查所有已知的非单连通的卡-丘三重,将所有标准模型的分类,他们和他们的数学和唯象性质的分析。这些杂种标准模型的明显的巨大稀缺性促使人们试图确定高国弦的大致大小。最近基于F理论的唯象学突破强调了构建实现各种已知局部模型的全局几何模型的紧迫性。超弦测度的构造是弦理论中一个重要的基础问题。最近的建议已将此转换为一个问题,在经典代数几何,密切相关的模块形式,肖特基问题,和theta身份。现有的建议并不十分奏效。几何朗兰兹猜想是代数几何和表示论中一个古老而重要的开放性问题。近年来,它也引起了物理学家的极大兴趣,他们将其嵌入到量子场论的背景中。他们的物理见解与最近在非交换Hodge理论和可积系统的旧思想的突破相结合,提供了一个完整的解决方案很快的真实的可能性。F-理论和它的对偶性的杂化弦是另一个领域,代数几何能够作出强大的贡献的物理。PI还建议继续开展广泛的教育活动,包括课程开发,教科书的编写,以及与本科生和研究生的广泛合作,旨在传播有关数学和高能物理相互作用的新知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ron Donagi其他文献
Hypersurface variations are maximal, I
- DOI:
10.1007/bf01389084 - 发表时间:
1987-06-01 - 期刊:
- 影响因子:3.600
- 作者:
James A. Carlson;Ron Donagi - 通讯作者:
Ron Donagi
The Hitchin Image in Type-D
Type-D 中的希钦图像
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Balasubramanian;Jacques Distler;Ron Donagi;Carlos Perez - 通讯作者:
Carlos Perez
Physical aspects of quantum sheaf cohomology for deformations of tangent bundles of toric varieties
复曲面簇的切束变形的量子束上同调的物理方面
- DOI:
10.4310/atmp.2013.v17.n6.a2 - 发表时间:
2011 - 期刊:
- 影响因子:1.5
- 作者:
Ron Donagi;J. Guffin;Sheldon Katz;Eric Sharpe - 通讯作者:
Eric Sharpe
F-theory vacua with <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msub><mrow><mi mathvariant="double-struck">Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math> gauge symmetry
- DOI:
10.1016/j.nuclphysb.2015.07.011 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:
- 作者:
Mirjam Cvetič;Ron Donagi;Denis Klevers;Hernan Piragua;Maximilian Poretschkin - 通讯作者:
Maximilian Poretschkin
The fibers of the Prym map
Prym 地图的纤维
- DOI:
10.1090/conm/136/1188194 - 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Ron Donagi - 通讯作者:
Ron Donagi
Ron Donagi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ron Donagi', 18)}}的其他基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 48.08万 - 项目类别:
Continuing Grant
Research in Mathematical Physics and Algebraic Geometry
数学物理与代数几何研究
- 批准号:
2001673 - 财政年份:2020
- 资助金额:
$ 48.08万 - 项目类别:
Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1937524 - 财政年份:2019
- 资助金额:
$ 48.08万 - 项目类别:
Standard Grant
Research at the Interface of Algebraic Geometry and String Theory
代数几何与弦理论的接口研究
- 批准号:
1603526 - 财政年份:2016
- 资助金额:
$ 48.08万 - 项目类别:
Continuing Grant
String Math Conferences 2014, June 9-13, 2014
2014 年弦数学会议,2014 年 6 月 9-13 日
- 批准号:
1401390 - 财政年份:2014
- 资助金额:
$ 48.08万 - 项目类别:
Standard Grant
SM: A Conference Series on Mathematical String Theory
SM:数学弦理论会议系列
- 批准号:
0963840 - 财政年份:2010
- 资助金额:
$ 48.08万 - 项目类别:
Standard Grant
Research Project in Algebraic Geometry and String Theory
代数几何和弦理论研究项目
- 批准号:
0612992 - 财政年份:2006
- 资助金额:
$ 48.08万 - 项目类别:
Continuing Grant
相似海外基金
Algebraic Graph Theory Research Proposal
代数图论研究计划
- 批准号:
363490-2008 - 财政年份:2010
- 资助金额:
$ 48.08万 - 项目类别:
Postgraduate Scholarships - Doctoral
Algebraic Graph Theory Research Proposal
代数图论研究计划
- 批准号:
363490-2008 - 财政年份:2009
- 资助金额:
$ 48.08万 - 项目类别:
Postgraduate Scholarships - Doctoral
Algebraic Graph Theory Research Proposal
代数图论研究计划
- 批准号:
363490-2008 - 财政年份:2008
- 资助金额:
$ 48.08万 - 项目类别:
Postgraduate Scholarships - Doctoral
Proposal for research of computational methods in algebraic topology
代数拓扑计算方法研究提案
- 批准号:
347451-2008 - 财政年份:2008
- 资助金额:
$ 48.08万 - 项目类别:
Postgraduate Scholarships - Master's
Pure mathematics. A proposal to seek uspport for research in the more pure and deep aspects of mathematics such as number theory, algebraic geometry, and knot theory
纯数学。
- 批准号:
346691-2007 - 财政年份:2007
- 资助金额:
$ 48.08万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Algebraic graph theory research proposal
代数图论研究计划
- 批准号:
347401-2007 - 财政年份:2007
- 资助金额:
$ 48.08万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Proposal for research of computational methods in algebraic topology
代数拓扑计算方法研究提案
- 批准号:
347451-2007 - 财政年份:2007
- 资助金额:
$ 48.08万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
FRG: Focused Research Collaborative Proposal: Differential Algebraic Inequalities and their Applications in Engineering
FRG:重点研究合作提案:微分代数不等式及其在工程中的应用
- 批准号:
0353216 - 财政年份:2003
- 资助金额:
$ 48.08万 - 项目类别:
Standard Grant
FRG: Focused Research Collaborative Proposal: Differential Algebraic Inequalities and their Applications in Engineering
FRG:重点研究合作提案:微分代数不等式及其在工程中的应用
- 批准号:
0139715 - 财政年份:2002
- 资助金额:
$ 48.08万 - 项目类别:
Standard Grant
FRG: Focused Research Collaborative Proposal: Differential Algebraic Inequalities and their Applications in Engineering
FRG:重点研究合作提案:微分代数不等式及其在工程中的应用
- 批准号:
0139701 - 财政年份:2002
- 资助金额:
$ 48.08万 - 项目类别:
Standard Grant














{{item.name}}会员




