Research at the Interface of Algebraic Geometry and String Theory
代数几何与弦理论的接口研究
基本信息
- 批准号:1603526
- 负责人:
- 金额:$ 51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The award supports the principal investigator's research at the interface of algebraic geometry and string theory. Algebraic geometry is the mathematical study of spaces described by arbitrary algebraic equations. Fundamental investigation of such diverse scientific disciplines as high energy physics, cryptography, phylogenetics, robotics, or control theory, often reveals that key concepts of the discipline can be encoded in terms of such geometric spaces. In some cases, such interactions suggest deep new problems in algebraic geometry whose solution is necessary for further progress. In other instances, the scientific intuition actually suggests new methods for solving old problems in algebraic geometry that were otherwise inaccessible. String theory and quantum field theory (QFT) explore physics at the smallest length scales, or correspondingly at the highest energy levels. Exploration of the interactions of these physical theories with algebraic geometry has been extremely productive for both math and physics, and the power of this combination of tools and approaches only seems to strengthen with time.The goal of this project is to explore and push forward the interface of algebraic geometry with string theory. This will be done by focusing on a number specific research directions, each representing a major open problem in math and/or in physics, whose solution will make a major contribution to the field, and is likely to benefit from the application of techniques of the opposite discipline. Specifically, the principal investigator proposes to explore the extension of the classical theory of curves and their moduli to super Riemann surfaces, with a view towards establishing the foundations of perturbative superstring theories and studying the superstring measure; to prove the geometric Langlands conjecture via non abelian Hodge theory, and explore its relation to QFT and to mirror symmetry; to extend his construction of Calabi-Yau integrable systems realizing Hitchin's system to meromorphic and parabolic versions, and explore the physical applications; to use his new parametrization of the moduli space of 6 dimensional principally polarized abelian varieties to analyze this space and determine its Kodaira dimension; and to explore further aspects of F theory and attempt to establish its mathematical foundations.
该奖项支持首席研究员在代数几何和弦理论的界面上的研究。代数几何是对由任意代数方程描述的空间的数学研究。对高能物理、密码学、系统发育学、机器人学或控制论等不同科学学科的基础研究往往表明,该学科的关键概念可以用这样的几何空间来编码。在某些情况下,这种相互作用暗示了代数几何中深刻的新问题,这些问题的解决对于进一步的发展是必要的。在其他情况下,科学直觉实际上为解决代数几何中的旧问题提供了新的方法,否则这些问题是无法解决的。弦理论和量子场论(QFT)在最小的长度尺度上探索物理,或者相应地在最高能级上探索物理。探索这些物理理论与代数几何的相互作用对数学和物理来说都是非常有成效的,这种工具和方法的组合的力量似乎只会随着时间的推移而增强。这个项目的目标是探索和推动代数几何与弦理论的接口。这将通过集中于一些具体的研究方向来实现,每个方向代表数学和/或物理中的一个重大悬而未决的问题,其解决方案将对该领域做出重大贡献,并可能受益于相反学科的技术应用。具体地说,主要研究人员提出将经典曲线理论及其模推广到超黎曼曲面,以期建立摄动超弦理论的基础并研究超弦测度;通过非阿贝尔Hodge理论证明几何朗兰兹猜想,并探索其与QFT和镜像对称性的关系;将他构造的实现Hitchin系统的Calabi-Yau可积系统推广到亚纯和抛物形式,并探索其物理应用;利用他对6维主极化阿贝尔变种的模空间的新的参数化来分析该空间并确定其Kodaira维度;并进一步探讨F理论,试图建立它的数学基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ron Donagi其他文献
Hypersurface variations are maximal, I
- DOI:
10.1007/bf01389084 - 发表时间:
1987-06-01 - 期刊:
- 影响因子:3.600
- 作者:
James A. Carlson;Ron Donagi - 通讯作者:
Ron Donagi
The Hitchin Image in Type-D
Type-D 中的希钦图像
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Balasubramanian;Jacques Distler;Ron Donagi;Carlos Perez - 通讯作者:
Carlos Perez
Physical aspects of quantum sheaf cohomology for deformations of tangent bundles of toric varieties
复曲面簇的切束变形的量子束上同调的物理方面
- DOI:
10.4310/atmp.2013.v17.n6.a2 - 发表时间:
2011 - 期刊:
- 影响因子:1.5
- 作者:
Ron Donagi;J. Guffin;Sheldon Katz;Eric Sharpe - 通讯作者:
Eric Sharpe
F-theory vacua with <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msub><mrow><mi mathvariant="double-struck">Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math> gauge symmetry
- DOI:
10.1016/j.nuclphysb.2015.07.011 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:
- 作者:
Mirjam Cvetič;Ron Donagi;Denis Klevers;Hernan Piragua;Maximilian Poretschkin - 通讯作者:
Maximilian Poretschkin
The fibers of the Prym map
Prym 地图的纤维
- DOI:
10.1090/conm/136/1188194 - 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Ron Donagi - 通讯作者:
Ron Donagi
Ron Donagi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ron Donagi', 18)}}的其他基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
Research in Mathematical Physics and Algebraic Geometry
数学物理与代数几何研究
- 批准号:
2001673 - 财政年份:2020
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1937524 - 财政年份:2019
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
String Math Conferences 2014, June 9-13, 2014
2014 年弦数学会议,2014 年 6 月 9-13 日
- 批准号:
1401390 - 财政年份:2014
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
SM: A Conference Series on Mathematical String Theory
SM:数学弦理论会议系列
- 批准号:
0963840 - 财政年份:2010
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Research Proposal in Algebraic Geometry and String Theory
代数几何和弦理论的研究计划
- 批准号:
0908487 - 财政年份:2009
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Research Project in Algebraic Geometry and String Theory
代数几何和弦理论研究项目
- 批准号:
0612992 - 财政年份:2006
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
相似海外基金
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 51万 - 项目类别:
Studentship
A2M: Exploring in-silico predicted arms-races at the plant-pathogen interface
A2M:探索植物-病原体界面的计算机预测军备竞赛
- 批准号:
BB/Y000560/1 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Research Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
RII Track-1: Interface of Change: Building Collaborations to Assess Harvested and Farmed Marine Species Prioritized by Gulf of Alaska Communities Facing Environmental Shifts
RII Track-1:变革界面:建立合作来评估面临环境变化的阿拉斯加湾社区优先考虑的捕捞和养殖海洋物种
- 批准号:
2344553 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Cooperative Agreement
CAREER: Understanding Interface Controlled Mechanisms of Recrystallization in Microstructurally Complex Mg Alloys
职业:了解微观结构复杂镁合金中界面控制的再结晶机制
- 批准号:
2339387 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
Analytic Number Theory at the Interface
界面上的解析数论
- 批准号:
2401106 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
REU Site: SURFing the Interface between Chemistry and Biology
REU 网站:探索化学与生物学之间的界面
- 批准号:
2348203 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
REU site: Research at the interface between engineering and medicine (ENGMED)
REU 网站:工程与医学之间的交叉研究 (ENGMED)
- 批准号:
2349731 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
CAREER: Engineering the nanoparticle interface for tunable biomolecular aggregation
职业:设计纳米颗粒界面以实现可调节的生物分子聚集
- 批准号:
2338117 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321103 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant














{{item.name}}会员




