Research in Mathematical Physics and Algebraic Geometry
数学物理与代数几何研究
基本信息
- 批准号:2001673
- 负责人:
- 金额:$ 52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to explore and push forward some of the major issues at the interface of algebraic geometry with string theory and quantum field theory. The research will employ and combine a variety of techniques from algebraic geometry, topology, integrable systems, string theory, and quantum field theory. The project also includes many broader impact activities such as curricular development at the graduate and undergraduate level, and research training opportunities for postdocs, graduate and undergraduate students. Exploration of the interactions of string theory and quantum field theory with algebraic geometry has been extremely productive for decades, and the power of this combination of tools and approaches only seems to strengthen with time. In this project, the PI plans to carry out: (1) a quantum field theory-inspired attack on the geometric Langlands conjecture via non-abelian Hodge theory; (2) a mathematical investigation of the recently discovered physical theories of class S in terms of variations of Hitchin systems; (3) applications of ideas from supergeometry to higher loop calculations in string theory; (4) exploration of moduli questions in algebraic geometry, some of them motivated by a quantum field theory conjecture, others purely within algebraic geometry; (5) extension of his construction of Calabi-Yau integrable systems realizing Hitchin's system to meromorphic and parabolic versions; and (6) further exploration of aspects of F-theory and establishment of its mathematical foundations. Each of these specific research areas represents a major open problem in math and/or in physics, whose solution will make a major contribution to the field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是通过字符串理论和量子场理论探索和推动代数几何界面的一些主要问题。该研究将采用并结合来自代数几何,拓扑,可集成系统,弦理论和量子场理论的各种技术。该项目还包括许多更广泛的影响活动,例如研究生和本科生的课程发展,以及研究生,研究生和本科生的研究培训机会。数十年来,探索字符串理论与量子场理论与代数几何形状的相互作用一直非常有效,工具和方法组合的力量似乎只会随着时间的推移而增强。在该项目中,PI计划进行:(1)通过非亚伯式霍奇理论对量子场理论启发的量子攻击; (2)关于希钦系统的变化,对最近发现的S类物理理论的数学研究; (3)在字符串理论中,从超级几何到较高循环计算的思想应用; (4)对代数几何形状中模量问题的探索,其中一些是由量子场理论猜想的,而另一些则纯粹是在代数几何内; (5)扩展了他的Calabi-Yau集成系统的构建,该系统将Hitchin的系统实现为Meromorormormorphic和抛物线版本; (6)进一步探索F理论的各个方面和建立其数学基础。这些特定的研究领域中的每一个都代表了数学和/或物理学中的一个主要开放问题,其解决方案将对该领域做出重大贡献。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子和更广泛的影响评估标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Brill-Noether-general limit root bundles: absence of vector-like exotics in F-theory Standard Models
Brill-Noether 一般极限根丛:F 理论标准模型中不存在类似矢量的奇异值
- DOI:10.1007/jhep11(2022)004
- 发表时间:2022
- 期刊:
- 影响因子:5.4
- 作者:Bies, Martin;Cvetič, Mirjam;Donagi, Ron;Ong, Marielle
- 通讯作者:Ong, Marielle
The bad locus in the moduli of super Riemann surfaces with Ramond punctures
具有雷蒙德穿孔的超级黎曼曲面模量的坏轨迹
- DOI:10.1016/j.geomphys.2023.104765
- 发表时间:2023
- 期刊:
- 影响因子:1.5
- 作者:Donagi, Ron;Ott, Nadia
- 通讯作者:Ott, Nadia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ron Donagi其他文献
The Hitchin Image in Type-D
Type-D 中的希钦图像
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Balasubramanian;Jacques Distler;Ron Donagi;Carlos Perez - 通讯作者:
Carlos Perez
Physical aspects of quantum sheaf cohomology for deformations of tangent bundles of toric varieties
复曲面簇的切束变形的量子束上同调的物理方面
- DOI:
10.4310/atmp.2013.v17.n6.a2 - 发表时间:
2011 - 期刊:
- 影响因子:1.5
- 作者:
Ron Donagi;J. Guffin;Sheldon Katz;Eric Sharpe - 通讯作者:
Eric Sharpe
F-theory vacua with <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msub><mrow><mi mathvariant="double-struck">Z</mi></mrow><mrow><mn>3</mn></mrow></msub></math> gauge symmetry
- DOI:
10.1016/j.nuclphysb.2015.07.011 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:
- 作者:
Mirjam Cvetič;Ron Donagi;Denis Klevers;Hernan Piragua;Maximilian Poretschkin - 通讯作者:
Maximilian Poretschkin
The fibers of the Prym map
Prym 地图的纤维
- DOI:
10.1090/conm/136/1188194 - 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Ron Donagi - 通讯作者:
Ron Donagi
Ron Donagi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ron Donagi', 18)}}的其他基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1937524 - 财政年份:2019
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Research at the Interface of Algebraic Geometry and String Theory
代数几何与弦理论的接口研究
- 批准号:
1603526 - 财政年份:2016
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
String Math Conferences 2014, June 9-13, 2014
2014 年弦数学会议,2014 年 6 月 9-13 日
- 批准号:
1401390 - 财政年份:2014
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
SM: A Conference Series on Mathematical String Theory
SM:数学弦理论会议系列
- 批准号:
0963840 - 财政年份:2010
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Research Proposal in Algebraic Geometry and String Theory
代数几何和弦理论的研究计划
- 批准号:
0908487 - 财政年份:2009
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Research Project in Algebraic Geometry and String Theory
代数几何和弦理论研究项目
- 批准号:
0612992 - 财政年份:2006
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
相似国自然基金
算子理论的若干历史问题研究
- 批准号:12301002
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
引力痕迹效应及相关数学物理问题研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于中高纬度结冰湖泊现场实测数据的关键物理驱动因子对冰下水生化要素影响机制和数学模式研究
- 批准号:52211530038
- 批准年份:2022
- 资助金额:10.00 万元
- 项目类别:国际(地区)合作与交流项目
引力痕迹效应及相关数学物理问题研究
- 批准号:12275350
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
剑桥数学物理学派在流体动力学中的数学物理工作研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401258 - 财政年份:2024
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
Collaborative Research: Conference: New England Algebraic Topology and Mathematical Physics Seminar (NEAT MAPS)
合作研究:会议:新英格兰代数拓扑与数学物理研讨会(NEAT MAPS)
- 批准号:
2329854 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
2023 Collective Behavior Gordon Research Conference
2023年集体行为戈登研究会议
- 批准号:
10683596 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Radiation Oncology at the Interface of Pediatric Cancer Biology and Data Science
儿科癌症生物学和数据科学交叉领域的放射肿瘤学
- 批准号:
10712290 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别: