RI: Large: Collaborative Research: Richer Representations for Machine Translation
RI:大型:协作研究:更丰富的机器翻译表示
基本信息
- 批准号:0910778
- 负责人:
- 金额:$ 56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research in machine translation of human languages has made substantial progress recently, and surface patterns gleaned automatically from online bilingual texts work remarkably well for some language pairs. However, for many language pairs, the output of even the best systems is garbled, ungrammatical, and difficult to interpret. Chinese-to-English systems need particular improvement, despite the importance of this language pair, while English-to-Chinese translation, equally important for communication between individuals, is rarely studied. This project develops methods for automatically learning correspondences between Chinese and English at a semantic rather than surface level, allowing machine translation to benefit from recent work in semantic analysis of text and natural language generation. One part of this work determines what types of semantic analysis of source language sentences can best inform a translation system, focusing on analyzing dropped arguments, co-reference links, and discourse relations between clauses. These linguistic phenomena must generally be made more explicit when translating from Chinese to English. A second part of the work integrates natural language generation into statistical machine translation, leveraging generation technology to determine sentence boundaries, ordering of constituents, and production of function words that translation systems tend to get wrong. A third part develops and compares algorithms for training and decoding machine translation models defined on semantic representations. All of this research exploits newly-developed linguistic resources for semantic analysis of both Chinese and English. The ultimate benefits of improved machine translation technology are easier access to information and easier communication between individuals. This in turn leads to increased opportunities for trade, as well as better understanding between cultures. This project's systems for both Chinese-to-English and English-to-Chinese are developed with the expectation that the approaches will be applied to other language pairs in the future.
人类语言机器翻译的研究最近取得了实质性进展,从在线双语文本自动收集的表面模式对于某些语言对来说效果非常好。然而,对于许多语言对来说,即使是最好的系统的输出也是乱码、不符合语法且难以解释的。尽管这种语言对很重要,但汉译英系统仍需要特别改进,而对于个人之间的交流同样重要的英译汉翻译却很少被研究。该项目开发了在语义而非表面层面自动学习中文和英文之间对应关系的方法,使机器翻译能够从文本语义分析和自然语言生成的最新工作中受益。这项工作的一部分确定了哪些类型的源语言句子语义分析可以最好地为翻译系统提供信息,重点分析删除的论点、共指链接和子句之间的话语关系。在汉译英时,这些语言现象通常必须更加明确。该工作的第二部分将自然语言生成集成到统计机器翻译中,利用生成技术来确定句子边界、成分排序以及翻译系统容易出错的功能词的生成。第三部分开发并比较了用于训练和解码基于语义表示定义的机器翻译模型的算法。所有这些研究都利用新开发的语言资源来进行中文和英语的语义分析。改进的机器翻译技术的最终好处是更容易获取信息和人与人之间的交流。这反过来又带来了贸易机会的增加以及文化之间更好的理解。该项目开发了汉英和英汉系统,期望这些方法将来能够应用于其他语言对。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathleen McKeown其他文献
Detecting Grief Online Among Black Harlem Residents
在哈莱姆区黑人居民中在线检测悲伤情绪
- DOI:
10.1016/j.biopsych.2025.02.119 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.000
- 作者:
Desmond Patton;Shana Kleiner;Shug Miller;Nick Deas;Jessie Grieser;James Shepherd;Elsbeth Turcan;Kathleen McKeown - 通讯作者:
Kathleen McKeown
Cross-Document Temporal Relation Extraction with Temporal Anchoring Events
使用时间锚定事件进行跨文档时间关系提取
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Miguel Ballesteros;Rishita Anubhai;Shuai Wang;minder Bhatia;Kathleen McKeown;Yaser Al;Iz Beltagy;Matthew E. Peters;Arman Cohan;Steven Bethard;James H. Martin;Sara Klingenstein;Taylor Cassidy;Bill McDowell;Nathanael Chambers;Danqi Chen;Adam Fisch;Jason Weston;Anne;Manuela Speranza;Eneko Agirre;N. Mostafazadeh;Alyson Grealish - 通讯作者:
Alyson Grealish
TinyStyler: Efficient Few-Shot Text Style Transfer with Authorship Embeddings
TinyStyler:通过作者嵌入进行高效的少量文本样式传输
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zachary Horvitz;Ajay Patel;Kanishk Singh;Christopher Callison;Kathleen McKeown;Zhou Yu - 通讯作者:
Zhou Yu
Sources of Hallucination by Large Language Models on Inference Tasks Anonymous EMNLP
推理任务中大型语言模型的幻觉来源 Anonymous EMNLP
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Nick McKenna;Mark Steedman. 2022;Smooth;Todor Mihaylov;Peter Clark;Tushar Khot;Dat Ba Nguyen;Johannes Hoffart;Martin Theobald;Ouyang Long;Jeff Wu;Xu Jiang;Car;L. Wainwright;Pamela Mishkin;Chong Zhang;Paul Christiano;J. Leike;Ryan Lowe;Adam Poliak;Jason Naradowsky;Aparajita Haldar;Rachel Rudinger;Benjamin Van;Eleanor Rosch;Carolyn B. Mervis;Wayne D Gray;David M Johnson;P. Boyes;Krishna Srinivasan;K. Raman;Anupam Samanta;Lingrui Liao;Luca Bertelli;Rohan Taori;Ishaan Gulrajani;Tianyi Zhang;Yann Dubois;Xuechen Li;Carlos Guestrin;Percy Liang;Tatsunori Hashimoto;Stan;Kushal Tirumala;A. Markosyan;Luke Zettlemoyer;Hugo Touvron;Thibaut Lavril;Gautier Izacard;Xavier Martinet;Marie;Timothée Lacroix;Baptiste Rozière;Naman Goyal;Eric Hambro;Faisal Azhar;Aurelien Rodriguez;Armand Joulin;Jason Wei;Xuezhi Wang;D. Schuurmans;Maarten Bosma;Brian Ichter;Fei Xia;E. Chi;V. Quoc;Le;Denny Zhou. 2022;Orion Weller;Marc Marone;Nathaniel Weir;Dawn Lawrie;Daniel Khashabi;Faisal Ladhak;Esin Durmus;Kathleen McKeown - 通讯作者:
Kathleen McKeown
Kathleen McKeown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathleen McKeown', 18)}}的其他基金
RI: Medium: Automatically Understanding and Identifying Digital Expression of Black Grief
RI:媒介:自动理解和识别黑人悲伤的数字表达
- 批准号:
2106666 - 财政年份:2021
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
RI: Small: Describing Disasters and the Ensuing Personal Toll
RI:小:描述灾难和随之而来的个人损失
- 批准号:
1422863 - 财政年份:2014
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
EAGER: Corpus-Based Narrative Semantics
EAGER:基于语料库的叙事语义
- 批准号:
0935360 - 财政年份:2009
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Text-to-Text Generation for Summarizing Informal Genres
用于总结非正式流派的文本到文本生成
- 批准号:
0534871 - 财政年份:2006
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
ITR: Collaborative Research: Interlingual Annotation of Multilingual Text Corporation
ITR:协作研究:多语言文本公司的语际注释
- 批准号:
0325887 - 财政年份:2003
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
DLI-Phase 2: A Patient Care Digital Library: Personalized Retrieval Summarization of Multimedia Information
DLI-阶段 2:患者护理数字图书馆:多媒体信息的个性化检索摘要
- 批准号:
9817434 - 财政年份:1999
- 资助金额:
$ 56万 - 项目类别:
Cooperative Agreement
STIMULATE: An Environment for Illustrated Briefing and Follow-up Search Over Live Multimedia Information
STIMULATE:通过实时多媒体信息进行图解简报和后续搜索的环境
- 批准号:
9619124 - 财政年份:1997
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
STIMULATE: Generating Coherent Summaries of On-Line Documents: Combining Statistical and Symbolic Techniques
刺激:生成在线文档的连贯摘要:结合统计和符号技术
- 批准号:
9618797 - 财政年份:1997
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CARD: Corpus Analysis Resources for Discourse
CARD:话语语料库分析资源
- 批准号:
9528998 - 财政年份:1996
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
CISE Research Infrastructure: Scalable Multimedia Information Processing
CISE 研究基础设施:可扩展多媒体信息处理
- 批准号:
9625374 - 财政年份:1996
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RI: Medium: A Rigorous, General Framework for Tractable Learning of Large-Scale DAGs from Data
协作研究:RI:Medium:从数据中轻松学习大规模 DAG 的严格通用框架
- 批准号:
1956330 - 财政年份:2020
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: A Rigorous, General Framework for Tractable Learning of Large-Scale DAGs from Data
协作研究:RI:Medium:从数据中轻松学习大规模 DAG 的严格通用框架
- 批准号:
1955532 - 财政年份:2020
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Incorporating Biologically-Motivated Circuit Motifs into Large-Scale Deep Neural Network Models of the Brain
RI:中:协作研究:将生物驱动的电路基序纳入大脑的大规模深度神经网络模型
- 批准号:
1704938 - 财政年份:2017
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: Incorporating Biological-Motivated Circuit Motifs into Large-Scale Deep Neural Network Models of the Brain
RI:中:协作研究:将生物驱动的电路基序纳入大脑的大规模深度神经网络模型
- 批准号:
1703161 - 财政年份:2017
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
RI: Large: Collaborative Research: A Robotic Network for Locating and Removing Invasive Carp from Inland Lakes
RI:大型:合作研究:用于定位和清除内陆湖泊入侵鲤鱼的机器人网络
- 批准号:
1534122 - 财政年份:2015
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: BCSP: Automated Parameter Tuning of Large-Scale Spiking Neural Networks
RI:媒介:协作研究:BCSP:大规模尖峰神经网络的自动参数调整
- 批准号:
1302256 - 财政年份:2013
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
RI: Medium: Collaborative Research: BCSP: Automated Parameter Tuning of Large-Scale Spiking Neural Networks
RI:媒介:协作研究:BCSP:大规模尖峰神经网络的自动参数调整
- 批准号:
1302125 - 财政年份:2013
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: 'Houston We Have A Solution': Novel Speech Processing Advancements for Analysis of Large Asynchronous Multi-Channel Audio Corpora
RI:小型:协作研究:“休斯顿,我们有一个解决方案”:用于分析大型异步多通道音频语料库的新颖语音处理进步
- 批准号:
1219130 - 财政年份:2012
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
RI: Large: Collaborative Research: Reconstructive recognition: Uniting statistical scene understanding and physics-based visual reasoning
RI:大型:协作研究:重建识别:结合统计场景理解和基于物理的视觉推理
- 批准号:
1212928 - 财政年份:2012
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: 'Houston, We Have a Solution': Novel Speech Processing Advancements for Analysis of Large Asynchronous Multi-Channel Audio Corpora
RI:小型:协作研究:“休斯顿,我们有一个解决方案”:用于分析大型异步多通道音频语料库的新颖语音处理进步
- 批准号:
1218159 - 财政年份:2012
- 资助金额:
$ 56万 - 项目类别:
Standard Grant














{{item.name}}会员




