String compactification, generalized geometry, and 4D physics
弦紧化、广义几何和 4D 物理
基本信息
- 批准号:0912219
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).A broad program of research is proposed to elucidate the geometrical structure that underlies the internal dimensions of string theory, and to overcome key obstacles to extracting 4D particle physics from this geometry. The two main areas that will be investigated are warped compactifications and generalized geometry. Three additional areas include global embeddings of local models of particle physics, the string theory LHC inverse problem, and a cosmological model in which conventional string theory vacua arise from a more symmetric phase in the past. Intellectual Merit: Nearly all compactifications of string theory currently under sudy are warped compactifications. It is proposed to apply string duality to derive the precise effect of warping in the reduction to 4D, and to check nonperturbative corrections to warped compactifications. The first project is essential for reliably computing perturbative mass spectra in string theory models. The second will increase confidence in recent nonperturbative mechanisms for moduli stabilization and for the generation of hierarchically small Majorana neutrino masses and mu-terms. Another critical ingredient in moduli stabilization and inflationary scenarios is internal magnetic flux, now generalized to nongeometric flux. The nongeometric flux radically alters our understanding of the internal geometry by destroying the usual 6D interpretation of the extra dimensions as a manifold. A set of strategies is outlined to more precisely characterize compactifications with generalized flux, and to extract the 4D physics of D-branes in this background. Of the remaining three proposed projects, two further advance the goal of connecting string theory to 4D physics at the scale soon to be probed at the LHC. The last project provides a concrete realization of a long speculated idea that conventional string theory vacua describe a symmetry breaking phase of a more symmetric underlying theory. Broader Impacts: The PI brings the exciting frontiers of string theory and elementary particle physics to Bryn Mawr College. Supervised research will foster diversity in science and engineering, by building on Bryn Mawr's strong tradition of individualized research mentoring of talented undergraduate women (a quarter of whom are students of color) and coeducational graduate students, with a proven track record of recruitment and retention. The Ph.D. program, as a feeder to the faculties of regional liberal arts colleges, expands research activity in high energy physics. The plan exploits existing infrastructure: departmental colloquia, the Tri-College PACT seminar, and connections to the University of Pennsylvania. The PI will initiate a Theory Lunch and a visitor program tailored to the needs of a high energy theory program at a thriving liberal arts college.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。提出了一个广泛的研究计划,以阐明弦论内部维度的几何结构,并克服从这种几何中提取4D粒子物理的关键障碍。将被调查的两个主要领域是翘曲紧化和广义几何。另外三个领域包括粒子物理学局部模型的全局嵌入,弦论LHC逆问题,以及一个宇宙学模型,其中传统的弦论真空产生于过去的一个更对称的阶段。智力上的优点:几乎所有弦理论的紧化都是翘曲紧化。建议应用弦对偶性来推导在约化到4D时翘曲的精确效果,并检查对翘曲紧化的非微扰修正。第一个项目对于在弦理论模型中可靠地计算微扰质谱是必不可少的。第二个将增加信心,在最近的非微扰机制的模量稳定和产生的层次小马约拉纳中微子质量和μ条款。在模量稳定和暴胀的情况下,另一个关键因素是内部磁通量,现在推广到非几何通量。非几何通量彻底改变了我们对内部几何的理解,因为它破坏了通常将额外维度解释为流形的6D解释。一组策略的概述,更精确地描述与广义通量紧化,并提取在此背景下的4D物理的D-膜。在剩下的三个项目中,有两个进一步推进了将弦理论与四维物理学联系起来的目标,其规模很快将在LHC上进行探索。最后一个项目提供了一个长期推测的想法的具体实现,即传统的弦理论真空描述了一个更对称的基础理论的对称破缺阶段。更广泛的影响:PI带来了令人兴奋的弦理论和基本粒子物理学前沿布林莫尔学院。监督研究将促进科学和工程的多样性,通过建立在布林莫尔的优秀的本科女性(其中四分之一是有色人种的学生)和男女同校的研究生的个性化研究指导的强大传统,与招聘和保留的良好记录。的博士该计划作为地区文科学院的一个馈线,扩大了高能物理的研究活动。该计划利用现有的基础设施:部门座谈会,三学院PACT研讨会,并连接到宾夕法尼亚大学。PI将启动理论午餐和访客计划,以满足蓬勃发展的文理学院的高能量理论课程的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Schulz其他文献
Polarized neutron radiography with a periscope
使用潜望镜进行偏振中子射线照相
- DOI:
10.1088/1742-6596/200/11/112009 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Michael Schulz;Andreas Neubauer;Martin Mühlbauer;Elbio Calzada;Burkhard Schillinger;Christian Pfleiderer;Peter Böni - 通讯作者:
Peter Böni
Self-Service Business Intelligence
- DOI:
10.1007/s12599-016-0424-6 - 发表时间:
2016-02-15 - 期刊:
- 影响因子:10.400
- 作者:
Paul Alpar;Michael Schulz - 通讯作者:
Michael Schulz
Dynamics of the fluctuation site-bond algorithm
- DOI:
10.1016/j.physleta.2006.03.014 - 发表时间:
2006-07-17 - 期刊:
- 影响因子:
- 作者:
Beatrix M. Schulz;Michael Schulz - 通讯作者:
Michael Schulz
Option pricing theory for financial assets with memory *
具有记忆功能的金融资产的期权定价理论*
- DOI:
10.1002/andp.200852002-309 - 发表时间:
2008 - 期刊:
- 影响因子:2.4
- 作者:
Michael Schulz - 通讯作者:
Michael Schulz
Cognitive heuristics in multitasking performance
多任务处理表现中的认知启发法
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Juergen Kiefer;Juergen Kiefer;Michael Schulz;Michael Schulz;L. Urbas - 通讯作者:
L. Urbas
Michael Schulz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Schulz', 18)}}的其他基金
CAREER: Novel Approaches to Hyperbranched Polymers
职业:超支化聚合物的新方法
- 批准号:
2237487 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Coherence Effects: A Sensitive Tool to Study the Few-Body Dynamics in Simple Atomic Systems
相干效应:研究简单原子系统中少体动力学的敏感工具
- 批准号:
2011307 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Few-Body Dynamics in Simple Atomic Systems
简单原子系统中的少体动力学
- 批准号:
1703109 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Coherence Effects and Few-Body Dynamics in Atomic Fragmentation Processes
原子碎片过程中的相干效应和少体动力学
- 批准号:
1401586 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
NSF East Asia and Pacific Summer Institute (EAPSI) for FY 2013 in Japan
2013 财年 NSF 东亚及太平洋夏季学院 (EAPSI) 在日本举行
- 批准号:
1310869 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Fellowship Award
Many-Body Collision Dynamics Involving Particles and Antiparticles
涉及粒子和反粒子的多体碰撞动力学
- 批准号:
0969299 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Few-Body Dynamics of Atomic Reactions Induced by Particles and Anti-Particles
粒子和反粒子引起的原子反应的少体动力学
- 批准号:
0652519 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Self-Consistent Ring-Current Particle Transport Simulations
合作研究:自洽环流粒子输运模拟
- 批准号:
0548915 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Few-Body Dynamics of Ionization Processes Induced by Particles and Anti-Particles
粒子和反粒子引起的电离过程的少体动力学
- 批准号:
0353532 - 财政年份:2004
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
U.S. Germany Cooperative Research: Three-Dimensional Imaging of Ionizing Collisions
美德合作研究:电离碰撞三维成像
- 批准号:
0224943 - 财政年份:2002
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
超弦/M-理论、粒子物理相关问题的研究
- 批准号:11105138
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Flavor structure and CP violation from string compactification
字符串压缩带来的风味结构和 CP 破坏
- 批准号:
23K03375 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Degeneration of abelian varieties and compactification of moduli
阿贝尔簇的退化和模的紧化
- 批准号:
22K03261 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study on Cooperation and Integration system of Urban space planning for Sustainable compactification
可持续压缩的城市空间规划合作整合体系研究
- 批准号:
21K14315 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The metric compactification and its applications in analysis and dynamics
度量紧化及其在分析和动力学中的应用
- 批准号:
2467850 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Studentship
CAREER: Effective Field Theories from String Compactification
职业:弦紧化的有效场论
- 批准号:
1756996 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Compactification of the moduli of abelian varieties over an integer ring
整数环上阿贝尔簇模的紧化
- 批准号:
17K05188 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Obtaining heterotic string theories via orbifold compactification of M-theory at the level of fully non-abelian actions for multiple M2-branes.
通过在多个 M2 膜的完全非阿贝尔作用水平上对 M 理论进行轨道压缩,获得杂优势弦理论。
- 批准号:
2026568 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Studentship
Degeneration and collapsing of Kleinian groups; geometry and analysis of the compactification of their defamation spaces
克莱因群的退化和崩溃;
- 批准号:
16H03933 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Effective Field Theories from String Compactification
职业:弦紧化的有效场论
- 批准号:
1452037 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Group Action on the conformal compactification of the Minkowski space
闵可夫斯基空间共形紧化的群作用
- 批准号:
443483-2013 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral