Nonlinear Preconditioning Techniques for Coupled Multi-physics Problems on Massively Parallel Computers
大规模并行计算机上耦合多物理问题的非线性预处理技术
基本信息
- 批准号:0913089
- 负责人:
- 金额:$ 26.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mature technologies are available for solving many types of single physics problems, but for coupled multi-physics problems, robust and scalable techniques are badly needed, especially for large scale parallel computers. The focus of the proposal is on some new domain decomposition based nonlinear preconditioning techniques for the numerical solution of some highly nonlinear, coupled systems of partial differential equations (PDEs) arising from multi-physics applications. These PDEs often represent multiple interacting fields (for example, fluid and solid), each is modeled by a certain type of equations. Current approaches usually involve a careful splitting of the fields and the use of field-by-field iterations to obtain a solution of the coupled problem. Such approaches have many advantages such as ease of implementation since only single field solvers are needed, but also exhibit disadvantages. For example, certain nonlinear interactions between the fields may not be fully captured, and for unsteady problems, stable time integration schemes are difficult to design. In addition, when implemented on large scale parallel computers, the sequential nature of the field-by-field iterations substantially reduces the parallel efficiency. To overcome the disadvantages, fully coupled approaches are investigated in order to obtain full physics simulations. The success of such a fully coupled approach depends almost entirely on a nonlinear algebraic system solver that is robust and scalable. Unfortunately, traditional nonlinear iterative methods do not work well, for example, Newton-like methods often converge very slowly because of the existence of local non-smooth components in the solution and the lack of good initial guess. The new algorithms are motivated by the nonlinear preconditioning methods recently introduced by the PI and his co-workers for solving algebraic nonlinear equations that have unbalanced nonlinearities. The scalability is obtained by incorporating the multigrid methods into the algorithms. Several important applications will be studied including the simulation of blood flows in compliant arteries using a coupled Navier-Stokes and elasticity equations.
已有成熟的技术可用于解决许多类型的单一物理问题,但对于耦合的多物理问题,迫切需要健壮性和可扩展性的技术,特别是对于大型并行计算机。该方案的重点是一些新的基于区域分解的非线性预处理技术,用于多物理应用中出现的一些高度非线性的、耦合的偏微分方程组的数值解。这些偏微分方程组通常代表多个相互作用的场(例如,流体和固体),每个场都由特定类型的方程来建模。目前的方法通常涉及对场的仔细拆分和使用逐场迭代来获得耦合问题的解。这种方法有许多优点,如易于实施,因为只需要单场解算器,但也有缺点。例如,场之间的某些非线性相互作用可能无法完全捕捉,对于非定常问题,很难设计稳定的时间积分格式。此外,当在大规模并行计算机上实现时,逐场迭代的顺序性质大大降低了并行效率。为了克服这些缺点,研究了全耦合方法,以获得完整的物理模拟。这种完全耦合方法的成功几乎完全依赖于一个健壮和可伸缩的非线性代数系统求解器。不幸的是,传统的非线性迭代方法并不能很好地发挥作用,例如,类牛顿迭代方法由于解中局部非光滑分量的存在以及缺乏良好的初值估计,往往收敛速度很慢。新的算法是由PI和他的同事最近引入的非线性预条件方法来求解具有不平衡非线性的代数非线性方程的。通过将多重网格方法结合到算法中来获得可伸缩性。将研究几个重要的应用,包括使用耦合的Navier-Stokes方程和弹性方程模拟顺应性动脉中的血液流动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao-Chuan Cai其他文献
A preconditioning method with the emGeneralized/em−emα/em time discretization for dynamic crack propagations based on XFEM
一种基于扩展有限元法(XFEM)的具有广义 -α时间离散的预处理方法用于动态裂纹扩展
- DOI:
10.1016/j.jcp.2025.113992 - 发表时间:
2025-07-15 - 期刊:
- 影响因子:3.800
- 作者:
Xingding Chen;Xiao-Chuan Cai - 通讯作者:
Xiao-Chuan Cai
Convergence rate estimate for a domain decomposition method
- DOI:
10.1007/bf01385503 - 发表时间:
1992-12-01 - 期刊:
- 影响因子:2.200
- 作者:
Xiao-Chuan Cai;William D. Gropp;David E. Keyes - 通讯作者:
David E. Keyes
Large eddy simulation of the wind flow in a realistic full-scale urban community with a scalable parallel algorithm
使用可扩展的并行算法对真实的全尺寸城市社区中的风流进行大涡模拟
- DOI:
10.1016/j.cpc.2021.108170 - 发表时间:
2022-01 - 期刊:
- 影响因子:6.3
- 作者:
Zhengzheng Yan;Rongliang Chen;Xiao-Chuan Cai - 通讯作者:
Xiao-Chuan Cai
Simulating Flows Passing a Wind Turbine with a Fully Implicit Domain Decomposition Method
- DOI:
https://doi.org/10.1007/978-3-319-18827-0_46 - 发表时间:
2016 - 期刊:
- 影响因子:
- 作者:
Rongliang Chen;Zhengzheng Yan;Yubo Zhao;Xiao-Chuan Cai - 通讯作者:
Xiao-Chuan Cai
Scalable Domain Decomposition Algorithms for Simulation of Flows Passing Full Size Wind Turbine
用于模拟通过全尺寸风力涡轮机的流动的可扩展域分解算法
- DOI:
10.4208/cicp.oa-2017-0196 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Rongliang Chen;Zhengzheng Yan;Yubo Zhao;Xiao-Chuan Cai - 通讯作者:
Xiao-Chuan Cai
Xiao-Chuan Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao-Chuan Cai', 18)}}的其他基金
Parallel Nonlinear Preconditioning Algorithms and Applications in Biomechanics
并行非线性预处理算法及其在生物力学中的应用
- 批准号:
1720366 - 财政年份:2017
- 资助金额:
$ 26.4万 - 项目类别:
Standard Grant
AF: Small: Fully Implicit Methods for Partial Differential Equations and Software for Hybrid Architecture
AF:小:偏微分方程的完全隐式方法和混合架构软件
- 批准号:
1216314 - 财政年份:2012
- 资助金额:
$ 26.4万 - 项目类别:
Standard Grant
NOSS: An Integrated Power Aware Sensor-Simulation Network System for Long-Term Performance Assessment of Concrete Infrastructures
NOSS:用于混凝土基础设施长期性能评估的集成功率感知传感器模拟网络系统
- 批准号:
0722023 - 财政年份:2007
- 资助金额:
$ 26.4万 - 项目类别:
Continuing Grant
Nonlinear Domain Decomposition Methods and Software for Multicomponent Problems
多分量问题的非线性域分解方法和软件
- 批准号:
0634894 - 财政年份:2006
- 资助金额:
$ 26.4万 - 项目类别:
Standard Grant
ALGORITHMS: Scalable Solvers for Nonlinear Partial Differential Equations
算法:非线性偏微分方程的可扩展求解器
- 批准号:
0305666 - 财政年份:2003
- 资助金额:
$ 26.4万 - 项目类别:
Continuing Grant
ITR/AP: A Live-Data Simulation with Application to Bridge Performance
ITR/AP:实时数据模拟及其应用以桥接性能
- 批准号:
0112930 - 财政年份:2001
- 资助金额:
$ 26.4万 - 项目类别:
Standard Grant
Parallel Nonlinear Elimination Methods and Software for Partial Differential Equations
偏微分方程的并行非线性消元法和软件
- 批准号:
0072089 - 财政年份:2000
- 资助金额:
$ 26.4万 - 项目类别:
Standard Grant
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 26.4万 - 项目类别:
Research Grant
視神経乳頭アストロサイトのPreconditioning制御機構の解明と治療開発
视盘星形胶质细胞预处理控制机制的阐明和治疗开发
- 批准号:
24K12782 - 财政年份:2024
- 资助金额:
$ 26.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
VLA-4–targeted 67Cu-LLP2A preconditioning enhances efficacy of T-cell-based adoptive immunotherapy
VLA-4™ 靶向 67Cu-LLP2A 预处理增强基于 T 细胞的过继免疫疗法的疗效
- 批准号:
10713034 - 财政年份:2023
- 资助金额:
$ 26.4万 - 项目类别:
Preconditioning brain white matter against ischemia
预处理脑白质以抵抗缺血
- 批准号:
10680844 - 财政年份:2023
- 资助金额:
$ 26.4万 - 项目类别:
Plexaa: an innovation in preoperative preconditioning for breast cancer surgery patients to prevent wound healing complications and improve outcomes
Plexaa:乳腺癌手术患者术前预处理的创新,可预防伤口愈合并发症并改善预后
- 批准号:
10056052 - 财政年份:2023
- 资助金额:
$ 26.4万 - 项目类别:
Collaborative R&D
Noninvasive preconditioning of mesenchymal stem cells to improve potency for bone repair
无创预处理间充质干细胞以提高骨修复效力
- 批准号:
10940869 - 财政年份:2023
- 资助金额:
$ 26.4万 - 项目类别:
Perceptions of Alberta Cow-Calf Producers Surrounding the Drivers and Barriers That Influence the Adoption Rate of Preconditioning in the Beef Industry
艾伯塔省牛犊生产者对影响牛肉行业预处理采用率的驱动因素和障碍的看法
- 批准号:
576056-2022 - 财政年份:2022
- 资助金额:
$ 26.4万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: Robust Acceleration and Preconditioning Methods for Data-Related Applications: Theory and Practice
协作研究:数据相关应用的鲁棒加速和预处理方法:理论与实践
- 批准号:
2208412 - 财政年份:2022
- 资助金额:
$ 26.4万 - 项目类别:
Standard Grant
NSF-BSF: AF: Collaborative Research: Small: Randomized preconditioning of iterative processes: Theory and practice
NSF-BSF:AF:协作研究:小型:迭代过程的随机预处理:理论与实践
- 批准号:
2209510 - 财政年份:2022
- 资助金额:
$ 26.4万 - 项目类别:
Standard Grant