ALGORITHMS: Scalable Solvers for Nonlinear Partial Differential Equations
算法:非线性偏微分方程的可扩展求解器
基本信息
- 批准号:0305666
- 负责人:
- 金额:$ 35.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2008-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The focus of this three-year research effort is the design, analysis and software implementation of a class of parallel nonlinear iterative methods for the numerical solution of some highly nonlinear partial differential equations (PDEs) arising from important applications in computational fluid dynamics and computational biology. The nonlinear PDEs to be considered in the project are usually not strongly elliptic, and they often contain non-elliptic components causing the solution to be nonsmooth and have local singularities, such as boundary layers or sharp fronts. For smooth nonlinear problems, traditional nonlinear methods, such as Newton's methods, are capable of reducing the global nonlinearities at a nearly quadratic convergence rate but become very slow once the local singularities appear somewhere in the computational domain, even if this happens to only a few components of a largenonlinear system. The proposed algorithm is motivated by the class of nonlinear preconditioning algorithms introduced by Cai and Keyes in 2001 for solving algebraic nonlinear equations that have unbalanced nonlinearities.In nonlinear preconditioning, the global problem is partitioned into subproblems, and subspace nonlinear eliminations are performed on all subproblems. The subproblem are then 'glued' together by a Schwarz type domain decomposition method. Due to the subspace nonlinear elimination, the local singularities are removed, and the global system therefore has more uniform nonlinearity. A family of such algorithms will be studied using a combination of multilevel/multigrid, domain decomposition, nonlinear preconditioning, and nonlinear elimination methods. Roughly speaking, in these algorithms, domain decomposition provides the parallelism, multilevel provides the scalability with respect to the problem size and to the number of processors on parallel computers, and nonlinear elimination removes the sensitivity to the local singularities.Several important application problems will be considered, including the steady state incompressible Navier-Stokes equations with high Reynolds number and the optimization of a steady state biofluid problem. To study the parallel performance of the algorithms on high performance computers, such as a cluster of workstations and supercomputers, a library will be developed as a plug-in package that is fully interoperable with PETSc of Argonne National Laboratory. The proposed algorithm and software development will have a great impact on the application areas, and will also have substantial influence on other areas of computational sciences where large nonlinear equations need to be solved.
这个为期三年的研究工作的重点是一类并行非线性迭代方法的设计,分析和软件实现的数值解的一些高度非线性偏微分方程(PDE)所产生的重要应用在计算流体力学和计算生物学。项目中要考虑的非线性偏微分方程通常不是强椭圆的,它们通常包含非椭圆分量,导致解是非光滑的,并具有局部奇异性,如边界层或尖锐的前沿。对于光滑的非线性问题,传统的非线性方法,如牛顿法,能够以接近二次的收敛速度减少全局非线性,但一旦局部奇异性出现在计算域的某个地方,即使这只发生在一个大型非线性系统的几个组件上,也会变得非常缓慢。该算法是在Cai和Keyes于2001年提出的求解非平衡非线性代数方程组的非线性预处理算法的基础上发展起来的.子问题,然后“粘”在一起的施瓦茨型区域分解方法。通过子空间非线性消除,消除了局部奇异性,使系统具有更均匀的非线性。一个家庭这样的算法将使用多级/多重网格,区域分解,非线性预处理,非线性消除方法的组合进行研究。粗略地说,在这些算法中,区域分解提供了并行性,多级提供了关于问题大小和并行计算机上的处理器数目的可伸缩性,而非线性消除消除了对局部奇异性的敏感性。包括高雷诺数的稳态不可压缩Navier-Stokes方程和稳态生物流体问题的优化。为了研究算法在高性能计算机上的并行性能,如工作站和超级计算机集群,将开发一个库作为一个插件包,与阿贡国家实验室的PETSc完全互操作。本文提出的算法和软件开发将对应用领域产生巨大的影响,也将对需要求解大型非线性方程的计算科学的其他领域产生实质性的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao-Chuan Cai其他文献
A preconditioning method with the emGeneralized/em−emα/em time discretization for dynamic crack propagations based on XFEM
一种基于扩展有限元法(XFEM)的具有广义 -α时间离散的预处理方法用于动态裂纹扩展
- DOI:
10.1016/j.jcp.2025.113992 - 发表时间:
2025-07-15 - 期刊:
- 影响因子:3.800
- 作者:
Xingding Chen;Xiao-Chuan Cai - 通讯作者:
Xiao-Chuan Cai
Convergence rate estimate for a domain decomposition method
- DOI:
10.1007/bf01385503 - 发表时间:
1992-12-01 - 期刊:
- 影响因子:2.200
- 作者:
Xiao-Chuan Cai;William D. Gropp;David E. Keyes - 通讯作者:
David E. Keyes
Large eddy simulation of the wind flow in a realistic full-scale urban community with a scalable parallel algorithm
使用可扩展的并行算法对真实的全尺寸城市社区中的风流进行大涡模拟
- DOI:
10.1016/j.cpc.2021.108170 - 发表时间:
2022-01 - 期刊:
- 影响因子:6.3
- 作者:
Zhengzheng Yan;Rongliang Chen;Xiao-Chuan Cai - 通讯作者:
Xiao-Chuan Cai
Simulating Flows Passing a Wind Turbine with a Fully Implicit Domain Decomposition Method
- DOI:
https://doi.org/10.1007/978-3-319-18827-0_46 - 发表时间:
2016 - 期刊:
- 影响因子:
- 作者:
Rongliang Chen;Zhengzheng Yan;Yubo Zhao;Xiao-Chuan Cai - 通讯作者:
Xiao-Chuan Cai
Scalable Domain Decomposition Algorithms for Simulation of Flows Passing Full Size Wind Turbine
用于模拟通过全尺寸风力涡轮机的流动的可扩展域分解算法
- DOI:
10.4208/cicp.oa-2017-0196 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Rongliang Chen;Zhengzheng Yan;Yubo Zhao;Xiao-Chuan Cai - 通讯作者:
Xiao-Chuan Cai
Xiao-Chuan Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao-Chuan Cai', 18)}}的其他基金
Parallel Nonlinear Preconditioning Algorithms and Applications in Biomechanics
并行非线性预处理算法及其在生物力学中的应用
- 批准号:
1720366 - 财政年份:2017
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
AF: Small: Fully Implicit Methods for Partial Differential Equations and Software for Hybrid Architecture
AF:小:偏微分方程的完全隐式方法和混合架构软件
- 批准号:
1216314 - 财政年份:2012
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
Nonlinear Preconditioning Techniques for Coupled Multi-physics Problems on Massively Parallel Computers
大规模并行计算机上耦合多物理问题的非线性预处理技术
- 批准号:
0913089 - 财政年份:2009
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
NOSS: An Integrated Power Aware Sensor-Simulation Network System for Long-Term Performance Assessment of Concrete Infrastructures
NOSS:用于混凝土基础设施长期性能评估的集成功率感知传感器模拟网络系统
- 批准号:
0722023 - 财政年份:2007
- 资助金额:
$ 35.67万 - 项目类别:
Continuing Grant
Nonlinear Domain Decomposition Methods and Software for Multicomponent Problems
多分量问题的非线性域分解方法和软件
- 批准号:
0634894 - 财政年份:2006
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
ITR/AP: A Live-Data Simulation with Application to Bridge Performance
ITR/AP:实时数据模拟及其应用以桥接性能
- 批准号:
0112930 - 财政年份:2001
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
Parallel Nonlinear Elimination Methods and Software for Partial Differential Equations
偏微分方程的并行非线性消元法和软件
- 批准号:
0072089 - 财政年份:2000
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Towards scalable electromagnetic solvers on high-performance compute platforms
在高性能计算平台上实现可扩展的电磁求解器
- 批准号:
2751559 - 财政年份:2022
- 资助金额:
$ 35.67万 - 项目类别:
Studentship
Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
- 批准号:
RGPIN-2019-04155 - 财政年份:2022
- 资助金额:
$ 35.67万 - 项目类别:
Discovery Grants Program - Individual
General-Domain, Scalable, Accelerated Spectral Partial Differential Equation Solvers and Applications in Simulation and Design
通用域、可扩展、加速谱偏微分方程求解器及其在仿真和设计中的应用
- 批准号:
2109831 - 财政年份:2021
- 资助金额:
$ 35.67万 - 项目类别:
Continuing Grant
Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
- 批准号:
RGPIN-2019-04155 - 财政年份:2021
- 资助金额:
$ 35.67万 - 项目类别:
Discovery Grants Program - Individual
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
- 批准号:
RGPIN-2019-04155 - 财政年份:2020
- 资助金额:
$ 35.67万 - 项目类别:
Discovery Grants Program - Individual
Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
- 批准号:
RGPIN-2019-04155 - 财政年份:2019
- 资助金额:
$ 35.67万 - 项目类别:
Discovery Grants Program - Individual
Highly Scalable Algorithms and Solvers for Eigen-Problems: Unconstrained Optimization and Multiple Power Iterations
用于特征问题的高度可扩展的算法和求解器:无约束优化和多次幂迭代
- 批准号:
1418724 - 财政年份:2014
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
Collaborative Research: Scalable and accurate direct solvers for integral equations on surfaces
协作研究:可扩展且精确的曲面积分方程直接求解器
- 批准号:
1320621 - 财政年份:2013
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant
Collaborative Research: Scalable and accurate direct solvers for integral equations on surfaces
协作研究:可扩展且精确的曲面积分方程直接求解器
- 批准号:
1320652 - 财政年份:2013
- 资助金额:
$ 35.67万 - 项目类别:
Standard Grant